Fotocatálisis heterogénea bajo luz solar basada en TiO2 y Bi2WO6: Aplicaciones ambientales

  • Lorean Madriz Universidad Simón Bolívar
  • Mariano Parra Universidad Simón Bolívar
  • Ronald Vargas Universidad Simón Bolívar
  • Benjamín R. Scharifker Universidad Metropolitana
  • Oswaldo Núñez Universidad Simón Bolívar
  • David Carvajal Universidad Simón Bolívar
Palabras clave: fotocatálisis heterogénea, química ambiental, TiO2, Bi2WO6, energía solar.

Resumen

En la presente revisión se consideran los aspectos sobre química ambiental asociados a la fotocatálisis heterogénea bajo luz solar basada en TiO2 y Bi2WO6; se destaca el mecanismo generalizado de formación de radicales libres, se discute sobre las estrategias empleadas para la mejora de los procesos de conversión de energía en el material en estado sólido, así como, en la interfase por moléculas adsorbidas. Se discuten los aspectos asociados a la creciente investigación sobre sistemas fotocatalíticos basados en el óxido Aurivillius más simple: el Bi2WO6, considerando los conceptos claves que definen la conversión de energía y, finalmente, se comentan diversas perspectivas sobre desarrollos ambientales que pueden resolverse con la implementación de la tecnología de fotoelectrocatálisis basada en nanomateriales.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Lorean Madriz, Universidad Simón Bolívar
Profesor de la Universidad Simón Bolívar
Mariano Parra, Universidad Simón Bolívar
Profesor de la Universidad Simón Bolívar
Ronald Vargas, Universidad Simón Bolívar
Profesor de la Universidad Simón Bolívar
Benjamín R. Scharifker, Universidad Metropolitana
Profesor de la Universidad Metropolitana
Oswaldo Núñez, Universidad Simón Bolívar
Profesor de la Universidad Simón Bolívar
David Carvajal, Universidad Simón Bolívar
Profesor de la Universidad Simón Bolívar

Citas

Acevedo-Peña, P., and González, I. (2013). TiO2 photoanodes prepared by cathodic electrophoretic deposition in 2-propanol: effect of the electric field and deposition time. Journal of Solid States Electrochemistry, 17, 519-526.

Araña, J., Martínez, J., Herrera, H., Rodríguez, J., González, O., Peña, J., and Méndez, J. (2004). Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories. Chemosphere, 55(6), 893-904.

Banhemann, D., Kormann, C., and Hoffmann, M. (1987). Preparation and Characterization of Quantum Size Zinc Oxide: A Detailed. Journal of Physical Chemistry, 3789-3798.

Ismail, A., and Bahnemann, D. (2014). Photochemical splitting of water for hydrogen production by photocatalysis: A review. Solar Energy Materials and Solar Cells, 128, 85-101.

Bard, A., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solution. New York: International Union of Pure and Applied Chemistry.

Berger, T., Monllor-Satoca, D., Jankulovska, M., Lana-Villareal, T., and Gómez, R., (2012). The electrochemistry of nanostructure titania dioxide electrodes. Chem Phys Chem, 13, 2824-2875.

Bloh, J. Z., Dillert, R., and Bahnemann, D. W. (2012). Designing Optimal Metal Doped Photocatalysts: Correlation between Photocatalytic Activity, Doping Ratio, and Particle Size.The Journal of Physical Chemistry C, 116, 25558−25562.

Butler, M. A., and Ginley, D. S. (1978). Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from Atomic Electronegativities. Journal of the electrochemical society, 125(2), 228–232.

Carvajal, D., Vargas, R., Borrás, C., Blanco, S., Mostany, J., and Scharifker, B. R. (2016). Photo(electro)oxidation of organic compounds with strong adsorption properties on TiO2: Kinetic model. Catalisis, 5, 89-96.

Chen, C., Qi, X., and Zhou, B. (1997). Photosensitization of colloidal TiO2 with am cyanine dye. Journal of Photochemistry and Photobiology A: Chemistry, 109(2), 155-158.

Chen, Y., Cao, X., Kuang, J., Chen, Z., Chen, J., and Lin, B. (2010). The gas-phase photocatalytic mineralization of benzene over visible-light-driven Bi2WO6@C microspheres. Catalysis Communications, 12(4), 247-250.

Chen, Y., Zhang, Y., Liu, C., Lu, A., and Zhang, W. (2012). Photodegradation of Malachite Green by Nanostructured Bi2WO6 Visible Light-Induced Photocatalyst. International Journal of Photoenergy, vol. 2012, Article ID 510158, 6 pages, 2012. doi:10.1155/2012/510158.

Choi, W., Termin, A., and Hoffmann, M. (1994). The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. Journal of Physical Chemistry, 13669-13678.

Chun, H., Yizhong, W., and Hongxiao, T. (2000). Destruction of phenol aqueous solution by photocatalysis or direct photolysis. Chemosphere, 41(8), 1205-1209.

Cifuentes, L., Flores, D., Madriz, L., and Vargas, R. (2015). Electrochemical oxidation of lambdacialotrina on Bi doped PbO2 electrodes. Química Nova, 38, 1009-1013.

Ding, H., Sun, H., and Shan, Y. (2005). Preparation and characterization of mesoporous SBA-15 supported dye-sensitized TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 169(1), 101-107.

Doménech, X., Jardim, W., Litter, M. (2001). Procesos avanzados de oxidación para la eliminación de contaminantes. Blesa, M. (Ed.), Eliminación de contaminantes por Fotocatálisis Heterogénea (pp 4-26). Buenos Aires, Argentina: Red CYTED VIII-G

Fabregat-Santiago, F., Garcia-Belmonte, G., Bisquert, J., Bogdanoff, P., and Zaban, A. (2003). Mott-Schottky analysis of nanoporous semiconductor electrodes in dielectric state deposited on SnO2 (F) conducting substrates. Journal of The Electrochemical Society, 150(6), E293—E298.

Falaras, P. (1998). Synergetic effect of carboxylic acid functional groups and fractal surface characteristics for efficient dye sensitization of titanium oxide. Solar Energy Materials and Solar Cells, 53(1-2), 163-175.

Friedmann, D., Mendiveb, C., and Bahnemann, D. (2010). TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. Applied Catalysis B: Environmental, 99(3-4), 398-406.

Fu, H., Pan, C., Yao, W., and Zhu, Y. (2005). Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi2WO6. Journal of Physical Chemistry, 22432-22439.

Fu, H., Zhang, S., Xu, T., Zhu, Y., and Chen, J. (2008). Photocatalytic Degradation of RhB by Fluorinated Bi2WO6 and Distributions of the Intermediate Products. Environmental Science y Technology, 42(6), 2085-2091.

Gaya, U. (2014). Heterogeneous photocatalysis using inorganic semiconductor solids. Springer Science + Business Media.

Gaya, U., and Abdullah, A. (2008). Heterogeneous photocatalytic degradation of organic contaminants over. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 1-12.

Gupta, H., and Luthra, V. (2011). Lattice dynamical investigations for Raman and infrared frequencies of Bi2WO6. Journal of Molecular Structure, 1005(1-3), 53– 58.

Hakki, A., Schneider, J., and Bahnemann, D. (2016). Understanding the chemistry of photocatalytic processes. Schneider, J., Bahnemann, D., Ye, J., Li Puma, G., and Dionysiou, D. (Eds.), Photocatalysis: Fundamentals and Perspectives (pp. 29-50). United Kingdom: RSC Energy and Environmental Series.

Hoffman, M., Martin, S., Choi, W., and Banhemann, D. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96.

Housecroft, C., and Sharpe, A. (2012). Inorganic Chemistry.4th edition. Pearson.

Izumi, I., Dunn, W., Wilbourn, K., Fan, F., and Bard, A. (1980). Heterogeneous photocatalytic oxidation of hydrocarbons on platinized titanium dioxide powders. Journal of Physical Chemistry, 3207-3210.

Jaffrezic-Renault, N., Pichat, P., Foissy, A., and Mercier, R. (1986). Study of the effect of deposited platinum particles on the surface charge of titania aqueous suspensions by potentiometry, electrophoresis, and labeled-ion adsorption. Journal of Physical Chemistry, 2733-2738.

Jie, H., Lee, H., Chae, K., Huh, M., Matsuoka, M., Cho, S., and Park, J. (2012). Nitrogen-doped TiO2 nanopowders prepared by chemical vapor synthesis: band structure and photocatalytic activity under visible light. Research on Chemical Intermediates, 1171-1180.

Kang, D., Park, Y., Hill, J.C., and Choi, K.S. (2014). Preparation of Bi-based ternary oxide photoanodes BiVO4, Bi2WO6, and Bi2Mo3O12 using dendritic Bi metal electrodes. The Journal of Physical Chemistry Letters, 5(17), 2994-2999.

Kendall, K., Navas, C., Thomas, J., and Loye, H. (1996). Recent Developments in Oxide Ion Conductors: Aurivillius Phases. Chemistry of Materials, 8, 642-649.

Lai, K., Zhu, Y., Lu, J., Dai, Y., and Huang, B. (2013). N- and Mo-doping Bi2WO6 in photocatalytic water splitting. Computational Materials Science, 67, 88-92.

Lasca, L. (2012). Propiedades ferroeléctricas de materials cerámicos con estructura Aurivillius. Revista de divulgación científica en física y matemática, (14), 1-15.

Li, H., Cui, Y., Hong, W., Hua, L., and Tao, D. (2012). Photodegradation of methyl orange by BiOI-sensitized TiO2. Rare Metals, 31(6), 604-610.

Liu, B., Zhao, X., Terashima, Ch., Fujishima, A., and Nakata, K. (2014). Physical Chemistry Chemical Physics, 16, 8751-8760.

López, T., Sánchez, E., Gómez, R., Ioffe, L., and Borodko, Y. (1997). Platinum acetylacetonate effect on sol-gel derived titania catalysts. Reaction Kinetics and Catalysis Letters, 289-295.

Lv, Y., Tao, W., Zong, R., and Zhu, Y. (2016). Fabrication of Wide–Range–Visible Photocatalyst Bi2WO6−x nanoplates via Surface Oxygen Vacancies. Scientific Reports, 6: doi:10.1038/srep19347.

Machuca-Martínez, F., Mueses, M. A., Colina-Márquez, J., and Li Puma, G. (2016). Photocatalytic reactor modeling. Schneider, J., Bahnemann, D., Ye, J., Li Puma, G., and Dionysiou, D. (Eds.), Photocatalysis: Fundamentals and Perspectives (pp. 29-50). United Kingdom: RSC Energy and Environmental Series.

Madriz, L., Carrero, H., Herrera, J., Cabrera, A., Canudas, N., and Fernández, L. (2011). Photocatalytic Activity of Metalloporphyrin–Titanium Mixtures in Microemulsions. Topics in Catalysis, 54, 236–243.

Madriz, L., Carrero, H., Núñez, O., Vargas, R., and Herrera, J. (2016). Mechanistic aspects of photocatalytic activity of metalloporphyrin – titanium mixtures in microemulsions. Química Nova, 39(8), 944-950.

Madriz, L., Tatá, J., Cuartas, V., Cuéllar, A., y Vargas, R. (2014a). Celdas solares fotoelectroquímicas basadas en Bi2WO6. Química Nova, 37(2), 226-231.

Madriz, L., Tatá, J., and Vargas, R. (2014b). The Photocatalytic Oxidation of 4-Chlorophenol Using Bi2WO6. International Journal of Photochemistry, vol. 2014, Article ID 387536, 6 pages, 2014. doi:10.1155/2014/387536

Malato, S., Fernández-Ibáñez, P., Maldonado, M., Blanco, J., and Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis:. Catalysis Today, 147, 1-59.

Mansilla, H., Bravo, C., Ferreyra, R., Litter, M., Jardim, W., Lizama, C., and Fernández, J. (2006). Photocatalytic EDTA degradation on suspended and immobilized TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 181(2-3), 188-194.

Méndez, D., Vargas, R., Borrás, C., Blanco, S., Mostany, J., and Scharifker, B. R. (2015). A rotating disk study of the photocatalytic oxidation of p-nitrophenol on phosphorus-modified TiO2 photocatalyst. D. Applied Catalysis B: Environmental, 166-167, 529-534.

Mrowetz, M., and Selli, E. (2006). Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO2 and ZnO water suspensions. Journal of Photochemistry and Photobiology A: Chemistry, 180(1-2), 15-22.

Neamen, D. (2006). Semiconductor Physics and Devices. 3rd Edition. New Mexico: McGraw-Hill.

Núñez, O., Rivas, C., and Vargas, R. (2014). Photopotential decay delay on TiO2 surface modified with p-benzaldehydes: consequences and applications. Journal of Physical Organic Chemistry, 28(3), 191-198.

Núñez, O., Rivas, C., and Vargas, R. (2016). Minimizing electron-hole recombination in modified TiO2 photocatalysis: electron transfer to solution as rate-limiting step in organic compounds degradation. Journal of Physical Organic Chemistry. doi: 10.1002/poc.3659

Oliva, F., Avalle, L., Santos, E., and Cámara, O. R. (2002). Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates. Journal of Photochemistry and Photobiology A: Chemistry, 146, 175-188.

Pardo, G., Vargas, R. and Núñez, O. (2008). Photocatalytic TiO2-assisted decomposition of Triton X-100: Inhibition of p-nitrophenol degradation. Journal of Physical Organic Chemistry, 21 (12) 1072-1078.

Park, H., Lee, H.C., Leonard, K.C., Liu, G., and Bard, A. (2013). Unbiased photoelectrochemical water splitting in Z-scheme device using W/Mo-doped BiVO4 and Zn(x)Cd(1–x)Se. ChemPhysChem, 14, 2277-2287.

Parra, M. (2016). Química de la interfase Bi2WO6 | aldehídos y sus implicaciones en procesos fotocatalíticos. Tesis de Licenciatura en Química. Universidad Simón Bolívar. Caracas, Venezuela.

Patrick, B., and Kamat, P. (1992). Photoelectrochemistry in semiconductor particulate systems. 17. Photosensitization of large-bandgap semiconductors: charge injection from triplet excited thionine into zinc oxide colloids. Journal of Physical Chemistry, 96(3), 1423-1428.

Pei, C., and Chu, W. (2013). The photocatalyic degradation and modeling of 2,4-dichlorophenoxyacetic acid by bismuth tungstate/peroxide. Chemical Engineering Journal, 223, 665-669.

Peter, L.M. (1990). Dynamic aspects of semiconductor photoelectrochemistry. Chemical Reviews, 90, 753-769.

Peter, L.M. (2016). Photoelectrochemistry: From Basic Principles to Photocatalysis. Schneider, J., Bahnemann, D., Ye, J., Li Puma, G., and Dionysiou, D. (Eds.), Photocatalysis: Fundamentals and Perspectives (pp. 1-28). United Kingdom: RSC Energy and Environmental Series.

Rakoff, H., and Rose, N. (2006). Química Orgánica Fundamental. México: Limusa.

Ren, J.; Wang, W.; Zhang, L.; Chang, J.; Hu, Sh. (2009). Photocatalytic inactivation of bacteria by photocatalyst Bi2WO6 under visible light. Catalysis Communications, 10, 1940-1943.

Saison, T., Chemin, N., Chanéac, C., Durupthy, O., Ruaux, V., Mariey, L., and Jolivet, J. (2011). Bi2O3, BiVO4 and Bi2WO6: Impact of Surface Properties on Photocatalytic Activity under Visible Light. The Journal of Physical Chemistry, 115(5), 5657- 5666.

Saison, T., Gras, P., Chemin, N., Chanéac, C., Duruphty, O., Brezová, V., and Jolivet, J. (2013). New Insights into Bi2WO6 Properties as a Visible-Light Photocatalyst. Journal of Physical Chemistry, 22656-22666.

Sánchez, E., López, T., Gómez, R., Morales, A., and Novaro, O. (1996). Synthesis and Characterization of Sol–Gel Pt/TiO2Catalyst. Journal of Solid State Chemistry, 309-314.

Sato, N. (1998). Electrochemistry at metal and semiconductor electrodes. Amsterdam: Elsevier.

Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., and Banhemann, D. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114 (19), 9919–9986.

Shang, M., Wang, W., Sun, S., Zhou, L., and Zhang, L. (2008). Bi2WO6 Nanocrystals with High Photocatalytic Activities under Visible Light. Journal of Physical Chemistry, 10407-10411.

Shang, M., Wang, W., Zhang, L., and Xu, H. (2010). Bi2WO6 with significantly enhanced photocatalytic activities by nitrogen doping. Materials Chemistry and Physics, 120, 155–159.

Song, X., Zheng, Y., Ma, R., Zhang, Y., and Yin, H. (2011). Photocatalytic activities of Mo-doped Bi2WO6 three-dimensional hierarchical microspheres. Journal of Hazardous Materials, 192 (1), 186-191.

Sun, S., and Wang, W. (2014). Advanced chemical compositions and nanoarchitectures of bismuth based complex oxides for solar photocatalytic application. RSC Advances, 4, 47136-47152.

Tang, J., Zou, Z., and Ye, J. (2004). Effects of Substituting Sr2+ and Ba2+ for Ca2+ on the Structural Properties and Photocatalytic Behaviors of CaIn2O4. Chemistry and Materials, 16, 1644-1649.

Tariq, M., Faisal, M., Muneer, M., and Bahnemann, D. (2007). Photochemical reactions of a few selected pesticide derivatives and other priority organic pollutants

in aqueous suspensions of titanium dioxid. Journal of Molecular Catalysis A: Chemical, 231-236.

Tatá, J. (2014). Fotocatálisis heterogénea basada en Bi2WO6 bajo radiación visible. Tesis de Licenciatura en Química. Universidad Simón Bolívar. Caracas, Venezuela. US Environmental Protection Agency. (2000). Release and Pollution Prevention Report.

Vargas, E., Vargas, R., and Núñez, O. (2014). A TiO2 surface modified with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt as a catalyst during photoinduced dichlorvos mineralization by visible solar light. Applied Catalysis B: Environmental, 8-14.

Vargas, R., and Núñez, O. (2009). Hydrogen bond interactions at the TiO2 surface: Their contribution to the pH dependent photo-catalytic degradation of pnitrophenol. Journal of Molecular Catalysis A: Chemistry, 300, 65-71.

Vargas, R., and Núñez, O. (2010). Photocatalytic degradation of oil industry hydrocarbons models at laboratory and at pilot-plant scale. Solar Energy, 84, 345-351.

Veselý, M., Čeppan, M., Brezová, M., and Lapčík, L. (1991). Photocatalytic degradation of hydroxyethylcellulose in aqueous Pt@TiO2 suspension. Journal of Photochemistry and Photobiology A: Chemistry, 399-406.

Vinodgopal, K., and Kamat, P. (1995). Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films. Environmental Science y Technology, 29(3), 841-845.

Visintin, A. (1996). Models of Phase Transitions. Boston: Birkäuser.

Wang, C., Liu, C., Wang, W., and Shen, T. (1997). Photochemical events during the photosensitization of colloidal TiO2 particles by a squaraine dye. Journal of Photochemistry and Photobiology A: Chemistry, 109(2), 159-164.

Wang, H., Liang, Y., Liu, L., Hu, J., and Cui, W. (2017). Reduced graphene oxide wrapped Bi2WO6 hybrid with ultrafast charge separation and improved photoelectrocatalytic performance. Applied Surface Science, 392(15), 51-60.

Wang, W. (2007). Effect of solution pH on the adsorption and photocatalytic reaction behaviors of dyes using TiO2 and Nafion-coated TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 261-268.

Wilke, K., and Breuer, D. (1999). The influence of transition metal doping on the physical and photocatalytic properties of titania. Journal of Nanomaterials, 121, 49-53.

Wolfe, R., and Newnahm, R. (1969). Crystal Structure of Bi2WO6. Solid State Communication, 7(7), 1797–1801.

Xing, M., Zhang, J., and Chen, F. (2009). Photocatalytic Performance of N-Doped TiO2 Adsorbed with Fe3+ Ions under Visible Light by a Redox Treatment. Journal of Physical Chemistry, 12848-12853.

Xu, C., Wei, X., Ren, Z., Wang, Y., Xu, G., Shen, G., and Han, G. (2009). Solvothermal preparation of Bi2WO6 nanocrystals with improved visible light photocatalytic activity. Materials Letters, 63, 2194-2197.

Xu, Y., and Schoonen, M. (2000). The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85, 543-556.

Yan, L., Wang, Y., Shen, H., Zhang, Y., Li, J., and Wang, D. (2017). Photocatalytic activity of Bi2WO6/Bi2S3 heterojunctions: the facilitation of exposed facets of Bi2WO6 substrate. Applied Surface Science, 393, 496-503.

Yang, J., Chen, D., Zhu, Y., Zhang, Y., and Zhu, Y. (2017). 3D-3D porous Bi2WO6/ grapheme hydrogel composite with excellent synergistic effect of adsorptionenrichment and photocatalytic degradation. Applied Catalysis B: Environmental, 205, 228-237.

Yu, J., Xiong, J., Cheng, B., Yu, Y., and Wang, J. (2005). Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders. Journal of Solid State Chemistry, 1968-1972.

Zaleska, A. (2008). Doped-TiO2: A Review. Recent Patents on Engineering, 2, 157 164.

Zhang, C., and Zhu, Y. (2005). Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chemistry of Materials, 17, 3537–3545.

Zhang, J., Huang, Z., Xu, Y., and Kang, F. (2012). Sol-Gel-Hydrothermal Synthesis of the Heterostructured TiO2/N-Bi2WO6 Composite with High-Visible-Light- and Ultraviolet-Light-Induced Photocatalytic Performances. International Journal of Photoenergy, 2012, 1-12.

Zhang, J., Liu, P., Zhang, Y., Xu, G, Lu, Z., Wang, X., Wang, Y., Yang, L., Tao, X., Wang, H., Zhang, E., Xi, J., and Ji, Z. (2015). Enhanced Performance of nano- Bi2WO6-Graphene as Pseudocapacitor Electrodes by Charge Transfer Channel. Scientific Reports, 5, 8624.

Zhang, L., Wang, W., Chen, Z., Zhou, L., Xu, H., and Zhu, W. (2007). Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. Journal of Material Chemistry, 2526-2532.

Zhang, L., and Zhu, Y. (2012). A review of controllable synthesis and enhancement of performance of bismuth tungstate visible-light-driven photocatalysts. Catalysis Science and Technology. doi:10.1039/c2cy00411a

Zhang, Y., Ma, Y., Liu, Q., Jiang, H., Wang, Q., Qu, D., and Shi, J. (2017). Synthesis of Er3+/Zn2+ co-doped Bi2WO6with highly efficient photocatalytic performance under natural indoor weak light illumination. Ceramics International, 43(2), 2598-2605.

Zhang, Z., Wang, W., and Zhang, L. (2013). Large improvement of photo-response of CuPc sensitized Bi2WO6 with enhanced photocatalytic activity. Dalton Transactions, 42, 4579-4585.

Zhang, Z., Wenzhong, W., Xu, J., Shang, M., Ren, J., and Sun, S. (2011). Enhanced photoatalytic activity of Bi2WO6 doped with upconversion luminescence agent. Catalysis Communications, 13, 31-34.

Zhao, X.; Xu, T.; Yao, W.; Zhang, C.; Zhu, Y. (2007). Photoelectrocatalytic degradation of 4-chlorophenol at Bi2WO6 nanoflake film electrode under visible light irradiation. Applied Catalysis B: Environmental, 72, 92-97.

Zheng, H., Guo, W., Li, Sh., Yin, R., Wu, Q, Feng, X, and Ren, X. (2017) Surfactant (CTAB) assisted flower-like Bi2WO6 through hydrothermal method: unintentional bromide ion doping and photocatalytic activity. Catalysis Communications, 88, 68-72.

Zheng, J., and Zhengbo, J. (2017). Modified Bi2WO6 with metal-organic frameworks for enhanced photocatalytic activity under visible light. Journal of Colloid and Interface Science, 488, 234 - 239.

Zhou, Y., Zhang, X., Zhao, Z., Zhang, Q., Wang, F. and Lin, Y. (2014). Effects of pH on the visible-light induced photocatalytic and photoelectrochemical performances of hierarchical Bi2WO6 microspheres. Superlattices and Microstructures, 72, 238 - 244.

Zhou, Y., Zhang, Y., Lin, M., Long, J., Zhang, Z., Lin, H., Wu, J. C.-S. and Wang, X. (2015). Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nature Communications, 6, 8340 - 8348.

Publicado
2020-02-08
Cómo citar
Madriz, L., Parra, M., Vargas, R., Scharifker, B. R., Núñez, O., & Carvajal, D. (2020). Fotocatálisis heterogénea bajo luz solar basada en TiO2 y Bi2WO6: Aplicaciones ambientales. Revista De La Universidad Del Zulia, 7(18), 11-54. Recuperado a partir de https://produccioncientificaluz.org./index.php/rluz/article/view/30925