Two interpolation theorems

  • Franklin Galindo Departamento de lógica y Filosofía de la Ciencia. Escuela de Filosofía. Universidad Central de Venezuela.
Keywords: Propositional logic, first order logic, Craig's interpolation property, models constructed from constants and inseparable theories, abstract model theory

Abstract

In this paper we present two proofs of the interpolation theorem: One for propositional logic and one for first
order logic ($\ell_{\aleph_0\aleph_0}$). Both are performed in the context of model theory. The interpolation theorem states that if $\varphi$ and $\psi$ are formulas, where $\varphi$ is not a contradiction, $\psi$ is not valid, and $\psi$ is a logical consequence of $\varphi$ ($\varphi \models \psi$), then there exists a formula $\delta$ which is written in a common language to that of $\varphi$ and $\psi$, such that $\varphi \models \delta$ and $\delta \models \psi$. The interpolation theorem was first proved for $\ell_{\aleph_0\aleph_0}$ by William Craig in 1957, and since then the possibility of generalizing or applying it has been investigated. This
theorem has generalizations or applications in proof theory, abstract model theory, computer science, modal logic, intuitionistic logic, etc. Examples of applications or generalizations of the interpolation property are presented related to infinitary logics, generalized quantifiers, second order, non-classical, abstract, etc, are presented. References on open problems regarding the interpolation property in the context of abstract model theory are also offered.

References

E. Amir. Interpolation theorems for Nonmonotonic Reasoning Systems. Appear in 8th European Conference on Logic in Artificial Intelligence (JELIA 2002).

A. Anderson and R. Belnap. Entailment. The Logic of relevance and necesity. Princeton University Press. 1975.

J. Bell. Infinitary Logic. Enciclopedia de Filosofía de la universidad de Stanford. 2016. https://plato.stanford.edu/entries/logic-infinitary/

E. Beth. On Padoa's method in the theory of definition. Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math., 15: 330-339. (1953).

J. van Benthem. Interpolation, Annotated Proofs, and Inference Across Models. Interpolations Conference in Honor of William Craig. Universidad de Stanford. 2007. http://math.stanford.edu/~feferman.

W. Craig. Linear reasoning. A new form the Herbrand-Gentzen theorem. The Journal of Symbolic Logic 22 (1957), N° 3, 250-268.

W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. The Journal of Symbolic Logic 22 (1957), N° 3, 269-285.

C. Chang and H. Keisler. Model Theory. Dover Publications, Inc. New York. 2012.

C. Di Prisco. Introdución a la lógica Matemática. EMALCA AMAZONIA. 2009.

C. Di Prisco. Inmersiones elementales y grandes cardinales. Notas no publicadas. 1982.

H. Enderton. Una Introducción Matemática a la lógic. Universidad Nacional Autónoma de México. México. 2004.

H. Ebbinghaus, J. Flum and W. Thomas. Mathematical Logic. Springer-Verlag. New York. 1989.

S. Feferman. Harmonious Logic: Craig’s Interpolation Theorem and its Descendants. Interpolations Conference in Honor o William Craig. Universidad de Stanford. 2007. http://math.stanford.edu/~feferman.

D. Gabbay and L. Maksimova. Interpolation and Definability: modal and Intuitionistic Logics}. Clarendon Press. Oxford. 2005.

F. Galindo. Una presentación de la demostración directa del teorema de compacidad de la lógica de primer orden que usa el método de ultraproductos}. UNA INVESTIGACI@CI'ON, Vol. VIII, N° 15 (2016).

K. Gödel. Obras completas. Alianza. Madrid. 1981.

L . Henkin. The completeness of the firs-orden functional calculu. The Journal of Symbolic Logic 14 (1949), 159-166.

L. Henkin. An extension of the Craig-Lyndon interpolation theorem. The Journal of Symbolic Logic 28 (1963), 201-216.

E. Hoogland. Definability and Interpolation. Model-Theoretic investigations. Institute for Logic, Language and Computation. Universiteit van Amsterdam. Promotor: Prof. dr. D. H. J. de Jongh. 2001.

G. Hughes y M. Cresswell. Introducción a la lógica modal. Tecnos. Madrid. 1973.

G. Hunter. Metalógica. Introducción a la metateoría de la lógica clásica de primer orden. Paraninfo. Madrid. 1981.

T. Jech. Set Theory. Springer. New York. 2000.

J. Makowsky. Model Theory in computer science: My Own Recurrent themes (and some lessons I learned). Faculty of Computer Science Technion-Israel Institute of Technology, Haifa, Israel. 2016.

M. Manzano. Teoría de modelos. Alianza. Madrid. 1989.

E. Mendelson. Introduction to Mathematical Logic. Chapman and Hall/CRL. U.S.A. 2009.

A. Nerode y R. Shore. Logic for Applications. Springer-Verlag. New York. 1993.

A. Robinson. A result on consistency and its application to the theory of definition. Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math., 18, 47-58. 1956.

H. Royden. Real Analysis. Pearson. 2010.

S. Shapiro. Foundations without Foundationalism. A Caso for Second-order Logic. Clarendon Press. Oxford. 2002.

M. Sundström. A Pedagogical History of Compactness. The American Mathematical Monthly, Vol. 122, N° 7, (August-September 2015), 619-635.

C. Tinelli. The Impact of Craig's Interpolation Theorem in Computer Science. Interpolations Conference in Honor of William Craig. Universidad de Stanford. 2007. http://math.stanford.edu/~feferman.

J. Väänänen. The Interpolation Theorem in Abstract Model Theory. Interpolations Conference in Honor of William Craig. Universidad de Stanford. 2007. http://math.stanford.edu/~feferman.

J. Väänänen. Barwise: Abstract Model Theory and Generalized Quantifiers. The Bulletin Symbolic Logic. Volumen 10, Número 1, Marzo 2004.

Published
2016-12-28
How to Cite
Galindo, F. (2016). Two interpolation theorems. Divulgaciones Matemáticas, 17(2), 15-42. Retrieved from https://produccioncientificaluz.org./index.php/divulgaciones/article/view/31366