Orthocenters of triangles in the n-dimensional space
Abstract
We present a way to define a set of orthocenters for a triangle in the $n$-dimensional space $\mathbb{R}^{n}$, and we show some analogies between these orthocenters and the classical orthocenter of a triangle in the Euclidean plane. We also define a substitute of the orthocenter for tetrahedra which we call $G$-orthocenter. We show that the $G$-orthocenter of a tetrahedron has some properties similar to those of the classical orthocenter of a triangle.
References
J. Alonso, H. Martini and S. Wu. On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces. Aequationes Math. 83 (2012), 153-189.
E. Asplund and B. Grünbaum. On the geometry of Minkowski planes. L'Enseignement Mathematique 6 (2) (1961), 299-306.
R. Crabbs. Gaspard Monge and the Monge point of the tetrahedrone. Mathematics Magazin 76 (3) (2003), 193-203.
A. Edmonds, M. Hajja and H. Martini. Orthocentric simplices and their centers. Results Math. 47 (2005), 266-295.
M, Hajja and H. Martini. Orthocentric simplices as the true generalizations of triangles. The Mathematical Intelligencer 35 (2013), 16-27.
H. Martini and M. Spirova. The Feuerbach circle and orthocentricity in normed planes}. L'Enseignement Mathematique 53 (2) (2007), 237-258.
H. Martini and S. Wu. On orthocentric systems in strictly convex normed planes. Extracta Math. 24 (2009), 31-45.
W. Pacheco and T. Rosas. On orthocentric systems in Minkowski planes. Beitr. Algebra Geom. 56 (2015), 249-262.
T. Rosas. Sistemas C-ortocéntricos y circunferencia de Feuerbach para cuadriláteros en planos de Minkowski. Boletín de la Asociación Matemática Venezolana, Vol. XXII, No. 2 (2015), 12-141.
T. Rosas. C-ortocentros y sistemas C-ortocéntricos en planos de Minkowski, Aleph Sub-cero, Serie de divulgación, 2014-II, 104-132.