Effectiveness of Wharton’s jelly mesenchymal stem cell medium on burn wound healing: Focus on apoptosis, necrosis, and autophagy
Abstract
The aim of this study is to evaluate the treatment efficacy of Platelet–Rich Plasma (PRP), silver sulfadiazine, and Wharton Jelly Mesenchymal Stem Cell–Derived Conditioned Medium (WJ–MSC–CM) on burn wounds using a rat model. The study included four groups, each with 16 rats, and the groups were further divided into two subgroups (n=8) for the 7th and 14th days of the treatment process. Group 1 received no treatment after the burn. Group 2 received PRP (Platelet–Rich Plasma) treatment on the first day after the burn. Group 3 was treated with silver sulfadiazine on the first day after the burn. Group 4 received WJ–MSC–CM on the first day after the burn. In the current study, the expression of Caspase–3, Bcl–2, TNF–α, p21, and Beclin–1 genes among the groups was evaluated by Real–time PCR. The silver sulfadiazine and WJ–MSC–CM treatment groups exhibited lower Bcl–2 expression and higher Caspase–3 and Beclin–1 expression compared to the other groups. TNF–α and p21 expression was high in the burn control group and showed lower expression in the treated groups. The current findings demonstrate that WJ–MSC–CM exhibits healing efficacy on burn wounds comparable to the reference drug (silver sulfadiazine) by inducing apoptosis and autophagy and reducing necroptosis and DNA damage. Additionally, PRP provided some positive benefits compared to the control group but was less effective than the other treatments.
Downloads
References
Martin N, Falder S. A review of the evidence for threshold of burn injury. Burns [Internet]. 2017; 43(8):1624–1639. doi: https://doi.org/gcqqx5 DOI: https://doi.org/10.1016/j.burns.2017.04.003
Smolle C, Cambiaso–Daniel J, Forbes AA, Wurzer P, Hundeshagen G, Branski LK, Huss F, Kamolz LP. Recent trends in burn epidemiology worldwide: a systematic review. Burns [Internet]. 2017; 43(2):249–257. doi: https://doi.org/f3tr38 DOI: https://doi.org/10.1016/j.burns.2016.08.013
Bolcato M, Roccaro M, Gentile A, Peli A. First report on medical treatment and outcome of burnt Cattle. Vet. Sci. [Internet]. 2023; 10(3):187. doi: https://doi.org/n8bt DOI: https://doi.org/10.3390/vetsci10030187
Jolly CJ, Dickman CR, Doherty TS, van Eeden LM, Geary WL, Legge SM, Woinarski JCZ, Nimmo DG. Animal mortality during fire. Glob. Change Biol. [Internet] 2022; 28(6):2053–2065. doi: https://doi.org/gn2mv5 DOI: https://doi.org/10.1111/gcb.16044
Vigani A, Culler CA. Systemic and local management of burn wounds. Vet. Clin. North Am. Small Anim. Pract. [Internet]. 2017; 47(6):1149–1163. doi: https://doi.org/gck2x7 DOI: https://doi.org/10.1016/j.cvsm.2017.06.003
Oryan A, Alemzadeh E, Moshiri A. Burn wound healing: present concepts, treatment strategies and future directions. J. Wound Care. [Internet]. 2017; 26(1):5–19. doi: https://doi.org/f9nbs5 DOI: https://doi.org/10.12968/jowc.2017.26.1.5
Ibrahim NI, Mohamed IN, Mohamed N, Mohd Ramli ES, Shuid AN. The effects of aqueous extract of Labisia Pumila (Blume) Fern.–Vill Var. Alata on wound contraction, hydroxyproline content and histological assessments in superficial partial thickness of second–degree burn model. Front. Pharmacol. [Internet]. 2022;13:968664. doi: https://doi.org/n8b3 DOI: https://doi.org/10.3389/fphar.2022.968664
Thakur K, Mahajan A, Sharma G, Singh B, Raza K, Chhibber S, Katare, OP. Implementation of Quality by Design (QbD) approach in development of silver sulphadiazine loaded egg oil organogel: An improved dermatokinetic profile and therapeutic efficacy in burn wounds. Int. J. Pharm. [Internet]. 2020; 576:118977. doi: https://doi.org/n8b5 DOI: https://doi.org/10.1016/j.ijpharm.2019.118977
Zheng W, Zhao DL, Zhao YQ, Li ZY. Effectiveness of platelet rich plasma in burn wound healing: a systematic review and meta–analysis. J. Dermatol. Treat. [Internet]. 2022; 33(1):131–137. doi: https://doi.org/n8b6 DOI: https://doi.org/10.1080/09546634.2020.1729949
Venter NG, Marques RG, Santos JS, Monte–Alto–Costa A. Use of platelet–rich plasma in deep second – and third–degree burns. Burns [Internet]. 2016; 42(4):807–814. doi: https://doi.org/f8qp82 DOI: https://doi.org/10.1016/j.burns.2016.01.002
Hosseini Mansoub N, Gürdal M, Karadadaş E, Kabadayi H, Vatansever S, Ercan G. The role of PRP and adipose tissue–derived keratinocytes on burn wound healing in diabetic rats. Biolmpacts [Internet]. 2018; 8(1):5–12. doi: https://doi.org/gdf8mz DOI: https://doi.org/10.15171/bi.2018.02
Marck RE, Gardien KLM, Stekelenburg CM, Vehmeijer M, Baas D, Tuinebreijer WE, Breederveld RS, Middelkoop E. The application of platelet–rich plasma in the treatment of deep dermal burns: A randomized, double–blind, intra–patient controlled study. Wound Rep. Reg. [Internet]. 2016; 24(4): 712–720. doi: https://doi.org/f9dtd9 DOI: https://doi.org/10.1111/wrr.12443
D’arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell. Biol. Int. [Internet]. 2019; 43(6):582–592. doi: https://doi.org/ghrvdg DOI: https://doi.org/10.1002/cbin.11137
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell. Death. Differ. [Internet]. 2015; 22(4):526–539. doi: https://doi.org/f64v6w DOI: https://doi.org/10.1038/cdd.2014.216
Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb. Perspect. Biol. [Internet]. 2013; 5:a008672. doi: https://doi.org/gbdkjg DOI: https://doi.org/10.1101/cshperspect.a008672
Kazak F, Akcakavak G, Alakus I, Alakus H, Kirgiz O, Karatas O, Deveci MZY, Coskun P. Proanthocyanidin alleviates testicular torsion/detorsion–induced ischemia/reperfusion injury in rats. Tissue Cell. [Internet]. 2024; 89:102459. doi: https://doi.org/n8b7 DOI: https://doi.org/10.1016/j.tice.2024.102459
Akcakavak G, Karataş O, Tuzcu N, Tuzcu M. Determination of apoptosis, necroptosis and autophagy markers by real–time PCR in naturally infected pneumonic pasteurellosis caused by Pasteurella multocida and Mannheimia haemolytica in cattle. Pak. Vet. J. [Internet]. 2024; 44(2):483–489. doi: https://doi.org/n8b8
Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. [Internet]. 2005; 1:112–119. doi: https://doi.org/ddvxwq DOI: https://doi.org/10.1038/nchembio711
Ma D, Wang X, Liu J, Cui Y, Luo S, Wang F. The development of necroptosis: what we can learn. Cell Stress Chaperones [Internet]. 2023; 28(6):969–987. doi: https://doi.org/n8fg DOI: https://doi.org/10.1007/s12192-023-01390-5
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature [Internet]. 2015; 517:311–320. doi: https://doi.org/f6vrbw DOI: https://doi.org/10.1038/nature14191
Degterev A, Zhou W, Maki JL, Yuan J. Chapter one – Assays for necroptosis and activity of RIP kinases. In: Ashkenazi A, Wells JA, Yuan J, editors. Methods in Enzymology. Vol. 545. [Internet]. Cambridge (MA, USA): Academic Press; 2014. p. 1–33. doi: https://doi.org/f6kc5h DOI: https://doi.org/10.1016/B978-0-12-801430-1.00001-9
Singer AJ, McClain SA, Taira BR, Guerriero JL, Zong W. Apoptosis and necrosis in the ischemic zone adjacent to third degree burns. Acad. Emerg. Med. [Internet]. 2008; 15(6):549–554. doi: https://doi.org/b5cqbb DOI: https://doi.org/10.1111/j.1553-2712.2008.00115.x
Dutto I, Tillhon M, Cazzalini O, Stivala LA, Prosperi E. Biology of the cell cycle inhibitor p21CDKN1A: molecular mechanisms and relevance in chemical toxicology. Arch. Toxicol. [Internet]. 2015; 89:155–178. doi: https://doi.org/f6xd4b DOI: https://doi.org/10.1007/s00204-014-1430-4
el–Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D,Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell [Internet]. 1993; 75:817–825. doi: https://doi.org/b2vd5m DOI: https://doi.org/10.1016/0092-8674(93)90500-P
el–Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, Wiman KG, Mercer WE, Kastan MB, Kohn KW, Elledge SJ, Kinzler KW, Vogelstein B. WAF1/CIP1 is induced in p53–mediated G1 arrest and apoptosis. Cancer Res. [Internet]. 1994 [cited 2 Jul. 2024]; 54(5):1169–1174. Available in: https://goo.su/FgjG2
Niculescu AB 3rd, Chen X, Smeets M, Hengst L, Prives C, Reed SI. Effects of p21Cip1/Waf1 at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol. Cell. Biol. [Internet]. 1998; 18(1):629–643. doi: https://doi.org/n8fh DOI: https://doi.org/10.1128/MCB.18.1.629
Ogryzko VV, Wong P, Howard BH. WAF1 retards S–phase progression primarily by inhibition of cyclin–dependent kinases. Mol. Cell. Biol. [Internet]. 1997; 17(8):4877–4882. doi: https://doi.org/n8fj DOI: https://doi.org/10.1128/MCB.17.8.4877
Radhakrishnan SK, Feliciano CS, Najmabadi F, Haegebarth A, Kandel ES, Tyner AL, Gartel AL. Constitutive expression of E2F–1 leads to p21–dependent cell cycle arrest in S phase of the cell cycle. Oncogene [Internet]. 2004; 23:4173–4176. doi: https://doi.org/fjdsdb DOI: https://doi.org/10.1038/sj.onc.1207571
Gartel AL, Radhakrishnan SK. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. [Internet]. 2005; 65(10):3980–3985. doi: https://doi.org/cm4xvk DOI: https://doi.org/10.1158/0008-5472.CAN-04-3995
Gartel AL. The conflicting roles of the cdk inhibitor p21(CIP1/WAF1) in apoptosis. Leuk. Res. [Internet]. 2005; 29(11):1237–1238. doi: https://doi.org/dkmrqq DOI: https://doi.org/10.1016/j.leukres.2005.04.023
Ahmadi AR, Chicco M, Huang J, Qi L, Burdick J, Williams GM, Cameron AM, Sun Z. Stem cells in burn wound healing: A systematic review of the literature. Burns [Internet]. 2019; 45(5):1014–1023. doi: https://doi.org/gkzfsm DOI: https://doi.org/10.1016/j.burns.2018.10.017
Pourfath MR, Behzad–Behbahani A, Hashemi SS, Derakhsahnfar A, Taheri MN, Salehi S. Monitoring wound healing of burn in rat model using human Wharton’s jelly mesenchymal stem cells containing cGFP integrated by lentiviral vectors. Iran. J. Basic Med. Sci. [Internet]. 2018; 21(1):70–76. doi: https://doi.org/g7dvzv
Xiao M, Li L, Li C, Zhang P, Hu Q, Ma L, Zhang H. Role of autophagy and apoptosis in wound tissue of deep second–degree burn in rats. [Internet]. Acad. Emerg. Med. 2014; 21(4):383–391. doi: https://doi.org/f5xwgk DOI: https://doi.org/10.1111/acem.12352
Pfaffl MW. A new mathematical model for relative quantification in real–time RT–PCR. Nucleic Acids Res. [Internet]. 2001; 29(9):e45. doi: https://doi.org/b7shzz DOI: https://doi.org/10.1093/nar/29.9.e45
Pfaffl MW, Hageleit M. Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real–time RT–PCR. Biotechnol. Lett. [Internet]. 2001; 23:275–282. doi: https://doi.org/dg5gvk DOI: https://doi.org/10.1023/A:1005658330108
Tan JQ, Zhang HH, Lei ZJ, Ren P, Deng C, Li XY, Chen SZ. The roles of autophagy and apoptosis in burn wound progression in rats. Burns [Internet]. 2013; 39(8):1551–1556. doi: https://doi.org/f5nmn5 DOI: https://doi.org/10.1016/j.burns.2013.04.018
Gravante G, Palmieri MB, Esposito G, Delogu D, Santeusanio G, Filingeri V, Montone A. Apoptotic death in deep partial thickness burns vs. normal skin of burned patients. J. Surg. Res. [Internet]. 2007; 141(2):141–145. doi: https://doi.org/bjnkm3 DOI: https://doi.org/10.1016/j.jss.2006.07.031

Copyright (c) 2025 Zeynep Çelik–Kenar, Mehmet Tuzcu, Gökhan Akçakavak, Nijat Majidov, Muhammed Öner, Ayşenur Tural–Çifçi, Rabia Şahin

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.