Analysis of genetic polymorphisms in the intron 9–10/exon 10 region of the BRCA1 gene in a population sample of dogs with mammary cancer from Uruguay

Keywords: Canine mammary tumors, canine BRCA1 gene, SNP

Abstract

This study involved clinical and genetic analysis of 15 female dogs with mammary tumors. Fourteen healthy female dogs were used as controls, and blood samples were collected from them for genetic analysis. Polymorphisms located in a splicing region of the largest exon of the BRCA1 gene were studied, both at the population and evolutionary level, in a population of female dogs with different histopathological types of mammary tumors. In the intron 9–10/exon 10 initiation region, two SNP–type polymorphisms are described: SNP1 and SNP2. The SNP1 produces a non–synonymous change with unknown effect on the coding protein. Selected animals underwent surgery, and samples were sent for histopathological analysis. Peripheral blood was also collected for DNA extraction. A region corresponding to intron 9–10/exon 10 of the BRCA1 gene (ENSCAFE00845051080) was amplified by endpoint PCR, with PCR results subsequently confirmed through agarose gel electrophoresis at 1%. PCR products were sequenced to study the polymorphisms identified within this region. No statistically significant differences were observed between the genotype frequencies in both populations (Chi2 0.33, P>0.5), indicating that SNP1 is not linked to mammary tumors in the studied animals. Regarding SNP2, the mutation was not identified in the studied groups (females with mammary tumors and controls), being monomorphic. Although this SNP2 is described in the Ensembl database, there are no genotyping data in reference populations. The phylogenetic analysis of the amplified intron 9–10/exon 10 revealed an evolutionary homology with Canis lupus familiaris, and a more distant relationship with other genera such as Vulpes and Nyctereutes within the Canidae family. It can be concluded that mutations in this splicing region of the largest exon of BRCA1 are not associated with the development of mammary tumors in canines within this group of animals.

Downloads

Download data is not yet available.

References

Adams V, Evans K, Sampson J, Wood J. Methods and mortality results of a health survey of purebred dogs in the UK. JSAP. [Internet]. 2010; 51(10):512–524. doi: https://doi.org/b53qs2 DOI: https://doi.org/10.1111/j.1748-5827.2010.00974.x

Fleming J, Creevy K, Promislow D. Mortality in North American dogs from 1984 to 2004: An investigation into age–, size–, and breed–related causes of death. J. Vet. Intern. Med. [Internet]. 2011; 25(2):187–198. doi: https://doi.org/dxs8c2 DOI: https://doi.org/10.1111/j.1939-1676.2011.0695.x

Paoloni M, Khanna C. Translation of new cancer treatments from pet dogs to humans. Nat. Rev. Cancer. [Internet]. 2008; 8(2):147–156. doi: https://doi.org/fvrsv4 DOI: https://doi.org/10.1038/nrc2273

Abdelmegeed SM, Mohammed S. Canine mammary tumors as a model for human disease (Review). Oncol. Lett. [Internet]. 2018; 15(6):8195–8205. doi: https://doi.org/mdsg DOI: https://doi.org/10.3892/ol.2018.8411

Rivera P, Melin M, Biagi T, Fall T, Häggström J, Lindblad–Toh, von Euler H. Mammary tumor development in dogs is associated with BRCA1 and BRCA2. Cancer Res. [Internet]. 2009; 69(22):8770–8774. doi: https://doi.org/bz3p2n DOI: https://doi.org/10.1158/0008-5472.CAN-09-1725

Rivera P, von Euler H. Molecular biological aspects on canine and human mammary tumors. Vet. Pathol. [Internet] 2011; 48(1):132–146. doi: https://doi.org/dp5qh5 DOI: https://doi.org/10.1177/0300985810387939

Scully R, LIvingston DM. In search of the tumor–suppressor functions of BRCA1 and BRCA2. Nature [Internet]. 2000; 408:429–432. doi: https://doi.org/cwz6kh DOI: https://doi.org/10.1038/35044000

Decuadro A, Llambi S, Benech A, Gagliardi R. Analysis of polymorphisms in BRCA1 and BRCA2 genes in a population samples of canines from Uruguay. Rev. Cienti. FCV–LUZ. [Internet] 2022; 32:e32163. doi https://doi.org/nzt2 DOI: https://doi.org/10.52973/rcfcv-e32163

Priyam A, Woodcroft BJ, Rai V, Moghul I, Munagala A, Ter F, Chowdhary H., Pieniak I, Maynard LJ, Gibbins MA, Moon HK, Davis–Richardson A, Uludag M, Watson–Haigh NS, Challis R, Nakamura H, Favreau E, Gómez EA, Pluskal T, Leonard G, Rumpf W, Wurm, Y. Sequenceserver: A modern graphical user interface for custom BLAST databases. Mol. Biol. Evol. [Internet]. 2019; 36(12):2922–2924. doi: https://doi.org/dgds DOI: https://doi.org/10.1093/molbev/msz185

Martin FJ, Gall A, Szpak M, Flicek P. Accessing livestock resources in Ensembl. Front. Genet. [Internet]. 2021; 12:650228. doi: https://doi.org/g8xrxx DOI: https://doi.org/10.3389/fgene.2021.650228

Li D, Harlan–Williams LM, Kumaraswamy E, Jensen RA. BRCA1—No matter how you splice it. Cancer Res. [Internet]. 2019; 79(9):2091–2098. doi: https://doi.org/g8xrxz DOI: https://doi.org/10.1158/0008-5472.CAN-18-3190

Ribeiro–Silva A, Garcia SB, Chahud F, Zucoloto S. Impacto prognóstico da expressão imuno–histoquímica do BRCA1 nos carcinomas mamários esporadicos. [Prognostic impact of BRCA1 immunohistochemistry expression in sporadic breast carcinomas]. J. Bras. Patol. Med. Lab. [Internet]. 2005; 41(3):197–203. Portuguese. doi: https://doi.org/bz838s DOI: https://doi.org/10.1590/S1676-24442005000300010

Pfeffer CM, Ho BN, Singh ATK. The evolution, functions and applications of the breast cancer genes BRCA1 and BRCA2. CGP. [Internet]. 2017; 14(5):293–298. doi: https://doi.org/gpdkxj DOI: https://doi.org/10.21873/cgp.20040

Goldschmidt M, Peña L, Rasotto R, Zapulli V. Classification and grading of canine mammary tumors. Vet. Pathol. [Internet] 2011; 48(1):117–131. doi: https://doi.org/cg36bk DOI: https://doi.org/10.1177/0300985810393258

Hall TA. BioEdit: a user–friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic. Acids Symp. Ser. 1999 [cited 21 Aug. 2024]; 41(41):95–98. Available in: https://goo.su/5Siuf

Yeh F, Yang RC, Boyle TJ, Ye ZH, Mao JX. PopGene, the user–friendly shareware for population genetic análisis [Internet]. Alberta (Canada): University of Alberta, Molecular Biology and Biotechnology Center. 1999 [cited 21 Aug. 2024]. Available in: https://goo.su/YmV1m

Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. [Internet]. 2012; 40(W1):W452–W457. doi: https://doi.org/gfwv5k DOI: https://doi.org/10.1093/nar/gks539

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat. Methods. [Internet]. 2010; 7(4):248–249. doi: https://doi.org/cc4rrw DOI: https://doi.org/10.1038/nmeth0410-248

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. [Internet]. 1990; 215:403–410. doi: https://doi.org/cnsjsz DOI: https://doi.org/10.1016/S0022-2836(05)80360-2

Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y, Raytselis Y, Sayers EW, Tao T, Ye J, Zaretskaya I. BLAST: a more efficient report with usability improvements. Nucleic Acids Res. [Internet]. 2013; 41(W1):W29–W33. doi: https://doi.org/gpmk7d DOI: https://doi.org/10.1093/nar/gkt282

Iniesta R, Guinó E, Moreno V. Análisis estadístico de polimorfismos genéticos en estudios epidemiológicos. Gac. Sanit. 2005 [cited 24 August 2024]; 19(4):333–341.Available in: https://goo.su/xNsDbXs DOI: https://doi.org/10.1157/13078029

Di Giacomo, D.; Di Domenico, M.; Defourny, SVP.; Malatesta D, Di Teodoro G, Martino M, Viola A, D’Alterio N, Cammà C, Modesto P, Petrini A. Validation of AmpliSeq NGS panel for BRCA1 and BRCA2 variant detection in canine formalin–fixed paraffin–embedded mammary tumors. Life [Internet]. 2022, 12(6):851. doi: https://doi.org/g8xrx2 DOI: https://doi.org/10.3390/life12060851

Jackson S, Fleming P, Eldridge M, Archer M, Ingleby S, Johnson R, Helgen K. Taxonomy of the Dingo: It’s an ancient dog. Aust. Zool. [Internet]. 2021; 41(3):347–357. doi: https://doi.org/g8xrx3 DOI: https://doi.org/10.7882/AZ.2020.049

Lou DI, McBee RM, Le UQ, Stone AC, Wilkerson GK, Demogines AM, Sawyer SL. Rapid evolution of BRCA1 and BRCA2 in humans and other primates. BMC Evol. Biol. [Internet]. 2014; 14:155. doi: https://doi.org/f59tsh DOI: https://doi.org/10.1186/1471-2148-14-155

Published
2025-01-06
How to Cite
1.
Decuadro A, Sosa M, García F, Balemian N, Montenegro M del C, Llambí S. Analysis of genetic polymorphisms in the intron 9–10/exon 10 region of the BRCA1 gene in a population sample of dogs with mammary cancer from Uruguay. Rev. Cient. FCV-LUZ [Internet]. 2025Jan.6 [cited 2025Apr.4];35(1):6. Available from: https://produccioncientificaluz.org./index.php/cientifica/article/view/43204
Section
Veterinary Medicine