Effect of Intramammary Hypochlorous Acid Administration on Subclinical Mastitis in Dairy Cows

  • Eyyup Hakan Ucar Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology. Aydin, Türkiye
  • Cevdet Peker Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology. Aydin, Türkiye
Keywords: Dairy cow, hypochlorous acid, subclinical mastitis, treatment

Abstract

Subclinical mastitis is a significant issue in dairy farming due to its impact on milk production and quality, leading to economic losses despite the absence of visible symptoms. The present study aimed to investigate the potential use of intramammary hypochlorous acid (HOCl) treatment as a viable substitute to antibiotics for the treatment of subclinical mastitis (SCM) in dairy cows. A total of 232 Holstein–Friesian dairy cows with 928 udder quarters were subjected to the California Mastitis Test (CMT) to identify the SCM. The results indicated that 141 cows had SCM in at least one udder quarter, with a rate of 60.78% in the herd. Among these cows, 259 udder quarters showed varying degrees of CMT–positive. Before the treatment, somatic cell counts (SCC) were determined, and bacterial cultures were performed on randomly selected 74 CMT–positive udder quarters. The HOCl was administered intramammary to these quarters for 5 days immediately after milking. The CMT, SCC, and bacterial culture were repeated on the 3rd and 5th days of the treatment. An increase in SCC was observed on the 3rd and 5th day of the treatment compared to before treatment (P<0.001). The bacterial growth reduced from 64.86% before treatment to 49.95% on the 3rd day and 22.97% on the 5th day of the treatment. Staphylococcus aureus was the most prevalent bacterium before the treatment. On the 3rd day of the treatment, bacterial growth rate, particularly in Candida spp., decreased compared to before the treatment. However, on the 5th day of the treatment, S. aureus and the combination of S. aureus with Candida spp. continued to show high growth rates. In conclusion, this study underscores that HOCl is a potential alternative to antibiotics for treating SCM in dairy cows. Further research covering both clinical and subclinical mastitis is recommended, along with studies aiming to prolong the presence of HOCl in the udder, determine its ideal dose, and increase its impact on more cells.

Downloads

Download data is not yet available.

References

Gurbulak K, Canooglu E, Abay M, Atabay O, Bekyurek T. İneklerde Subklinik Mastitisin Farklı Yöntemlerle Saptanması [Determination of subclinical mastitis in dairy cows by different methods]. Kafkas Univ. Vet. Fak. Derg. [Internet]. 2009; 15(5):765–70. Turkish. doi: https://doi.org/g3v5qt

Sinha MK, Thombare NN, Mondal B. Subclinical mastitis in dairy animals: Incidence, economics, and predisposing factors. Sci. World J. [Internet]. 2014; 523984. doi: https://doi.org/gb528t

Viguier C, Arora S, Gilmartin N, Welbeck K, O’Kennedy R. Mastitis detection: current trends and future perspectives. Trends Biotechnol. [Internet]. 2009; 27(8):486–493. doi: https://doi.org/c42vsb

Bhakat C, Mohammad A, Mandal DK, Mandal A, Rai S, Chatterjee A, Ghosh MK, Dutta TK. Readily usable strategies to control mastitis for production augmentation in dairy cattle: A review. Vet. World [Internet]. 2020; 13(11):2364–2370. doi: https://doi.org/g3v5q5

Lakshmi R, Jayavardhanan KK. Screening of milk samples for sub–clinical and clinical mastitis by using CMT and SCC. J. Med. Sci. Clin. Res. [Internet]. 2016; 4(6):10853–10855. doi: https://doi.org/g3v5rb

Ghimpețeanu OM, Pogurschi EN, Popa DC, Dragomir N, Drăgotoiu T, Mihai OD, Petcu CD. Antibiotic use in livestock and residues in food—A public health threat: A review. Foods [Internet]. 2022; 11(10):1430. doi: https://doi.org/g3v5rg

Pyörälä S. New strategies to prevent mastitis. Reprod. Domest. Anim. [Internet]. 2002; 37(4):211–216. doi: https://doi.org/dgh6hh

Martins L, Barcelos MM, Cue RI, Anderson KL, dos Santos MV, Gonçalves JL. Chronic subclinical mastitis reduces milk and components yield at the cow level. J. Dairy Res. [Internet]. 2020; 87(3):298–305. doi: https://doi.org/g3v5rj

Nielen M, Schukken YH, Van de Broek J, Brand A, Deluyker HA, Maatje K. Relations between on–line electrical conductivity and daily milk production on a low somatic cell count farm. J. Dairy Sci. [Internet]. 1993; 76:2589–2596. doi: https://doi.org/dhmbg3

Dhakal IP. Normal somatic cell count and subclinical mastitis in Murrah buffaloes. J. Vet. Med. Ser. B. [Internet]. 2006; 53(2):81–86. doi: https://doi.org/cz4nxf

Kaşikçi G, Çetin Ö, Bingöl EB, Gündüz MC. Relations between electrical conductivity, somatic cell count, California mastitis test and some quality parameters in the diagnosis of subclinical mastitis in dairy cows. Turkish J. Vet. Anim. Sci. [Internet]. 2012; 36(1):49–55. doi: https://doi.org/g3v5rs

Rainard P, Foucras G, Boichard D, Rupp R. Invited review: Low milk somatic cell count and susceptibility to mastitis. J. Dairy Sci. [Internet]. 2018; 101(8):6706–6714. doi: https://doi.org/gdzf3k

Harmon RJ. Physiology of mastitis and factors affecting somatic cell counts. J. Dairy Sci. [Internet]. 1994; 77:2103–2112. doi: https://doi.org/bmzbch

Enright E, Bland AP, Needs EC, Kelly AL. Proteolysis and physicochemical changes in milk on storage as affected by UHT treatment, plasmin activity and KIO3 addition. Int. Dairy J. [Internet]. 1999; 9(9):581–591. doi: https://doi.org/c9mgdq

Kalit S, Lukac Havranek J, Kaps M, Perko B, Cubric Curik V. Proteolysis and the optimal ripening time of Tounj cheese. Int. Dairy J. [Internet]. 2005; 15(6–9):619–624. doi: https://doi.org/b97wrj

Fernandes AM, Oliveira CAF, Lima CG. Effects of somatic cell counts in milk on physical and chemical characteristics of yoghurt. Int. Dairy J. [Internet]. 2007; 17(2):111–115. doi: https://doi.org/ckdj6f

Revello Chion A, Tabacco E, Giaccone D, Peiretti PG, Battelli G, Borreani G. Variation of fatty acid and terpene profiles in mountain milk and “Toma piemontese” cheese as affected by diet composition in different seasons. Food Chem. [Internet]. 2010; 121(2):393–399. doi: https://doi.org/bm98rf

Sanford CJ, Keefe GP, Sanchez J, Dingwell RT, Barkema HW, Leslie KE, Dohoo IR. Test characteristics from latent–class models of the California Mastitis Test. Prev. Vet. Med. [Internet]. 2006; 77(1–2):96–108. doi: https://doi.org/df6rms

Tran AQ, Topilow N, Rong A, Persad PJ, Lee MC, Lee JH, Anagnostopoulos AG, Lee WW. Comparison of skin antiseptic agents and the role of 0.01% hypochlorous acid. Aesthetic Surg. J. [Internet]. 2021; 41(10):1170–1175. doi: https://doi.org/g3v5sc

Lipsky BA, Aragón‐Sánchez J, Diggle M, Embil J, Kono S, Lavery L, Senneville É, Urbančič–Rovan V, Van Asten S, Peters EJG, on behalf of the International Working Group on the Diabetic Foot (IWGDF). IWGDF guidance on the diagnosis and management of foot infections in persons with diabetes. Diabetes. Metab. Res. Rev. [Internet]. 2016; 32:45–74. doi: https://doi.org/f78b4g

Sakarya S, Gunay N, Karakulak M, Ozturk B, Ertugrul B. Hypochlorous Acid: an ideal wound care agent with powerful microbicidal, antibiofilm, and wound healing potency. Wounds [Internet]. 2014 [cited 20 May 2024]; 26(12):342–350. PMID: 25785777. Available in: https://goo.su/qNtC

Fukuyama T, Martel BC, Linder KE, Ehling S, Ganchingco JR, Bäumer W. Hypochlorous acid is antipruritic and anti–inflammatory in a mouse model of atopic dermatitis. Clin. Exp. Allergy [Internet]. 2018; 48(1):78–88. doi: https://doi.org/gt5j7q

Sam CH, Lu HK. The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease. J. Dent. Sci. [Internet]. 2009; 4(2):45–54. doi: https://doi.org/bbnw6d

Yildiz İ, Tileklioğlu E, Yilmaz Ö, Ertabaklar H, Sakarya S. Stabilized hypochlorous acid, a topical therapeutic strategy for Trichomonas vaginalis infection: An in vitro study. Parasitol. United J. [Internet]. 2020;13(1):60–65. doi: https://doi.org/g3v5sn

Stroman DW, Mintun K, Epstein AB, Brimer CM, Patel CR, Branch JD, Najafi–Tagol K. Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin. Clin. Ophthalmol. [Internet]. 2017; 11:707–714. doi: https://doi.org/gg3wc8

Chen CJ, Chen CC, Ding SJ. Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. Int. J. Mol. Sci. [Internet]. 2016; 17(7):1161. doi: https://doi.org/f82j8p

Kubota A, Goda T, Tsuru T, Yonekura T, Yagi M, Kawahara H, Yoneda A, Tazuke Y, Tani G, Ishii T, Umeda S, Hirano K. Efficacy and safety of strong acid electrolyzed water for peritoneal lavage to prevent surgical site infection in patients with perforated appendicitis. Surg. Today [Internet]. 2015; 45:876–879. doi: https://doi.org/f7gd84

Joachim D. Wound cleansing: benefits of hypochlorous acid. J. Wound Care [Internet]. 2020; 29(10 Suppl. 2):s4–s8. doi: https://doi.org/g3v5sw

Sakarya S, Gunay N, Karakulak M, Ozturk B, Ertugrul B. Hypochlorous acid: An ideal wound care agent with powerful microbicidal, antibiofilm, and wound healing potency. Wounds [Internet]. 2014 [cited 20 May 2024]; 26(12):342–350. PMID: 25785777. Available in: https://goo.su/GTGD

Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. [Internet]. 2020; 104(3):246–251. doi: https://doi.org/ggm86h

Park GW, Boston DM, Kase JA, Sampson MN, Sobsey MD. Evaluation of liquid – and fog–based application of sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl. Environ. Microbiol. [Internet]. 2007; 73(14):4463–4468. doi: https://doi.org/fr278k

Roy JP, Du Tremblay D, DesCôteaux L, Messier S, Scholl D, Bouchard É. Evaluation of the California Mastitis Test as a precalving treatment selection tool for Holstein heifers. Vet. Microbiol. [Internet]. 2009; 134(1–2):136–142. doi: https://doi.org/d7shpq

McFadden M. California mastitis test and milk quality. Michigan Dairy Rev. [Internet]. 2011 [Cited 12 Apr. 2024]; 16(2):1–3. Available in: https://goo.su/Ul3kuEG

Çeti̇n H, Erdoğan G, Yilmaz Ö, Uçar EH, Peker C, Sakarya S. Investigation of intramammary hypochlorous administration in cattles with subclinical mastitis. In: Mediterranean Veterinary Congress coupled with 7th REEV–Med General Assembly; 2018 Dec. 13–14; Kirikkale. Turkey; 2018. p. 13–14.

Procop GW, Church DL, Hall GS, Janda WM, Koneman EW, Schereckenberger PC, Woods GL. Konemam’s color atlas and textbook of diagnostic microbiology. 7th ed. Burlington (MA, USA): Jones Barlett Learning; 2017. 1864 p.

Paramasivam R, Gopal DR, Dhandapani R, Subbarayalu R, Elangovan MP, Prabhu B, Veerappan V, Nandheeswaran A, Paramasivam S, Muthupandian S. Is AMR in dairy products a threat to human health? An updated review on the origin, prevention, treatment, and economic impacts of subclinical mastitis. Infect. Drug Resist. [Internet]. 2023; 16:155–178. doi: https://doi.org/g3v5s7

de Graaf T, Dwinger RH. Estimation of milk production losses due to sub–clinical mastitis in dairy cattle in Costa Rica. Prev. Vet. Med. [Internet]. 1996; 26(3–4):215–222. doi: https://doi.org/bqd3vr

Karimuribo ED, Fitzpatrick JL, Bell CE, Swai ES, Kambarage DM, Ogden NH, Bryant MJ, French NP. Clinical and subclinical mastitis in smallholder dairy farms in Tanzania: Risk, intervention and knowledge transfer. Prev. Vet. Med. [Internet]. 2006; 74(1):84–98. doi: https://doi.org/ddxj22

Zhao X, Lacasse P. Mammary tissue damage during bovine mastitis: causes and control. J. Anim. Sci. [Internet]. 2008; 86(Suppl. 13):57–65. doi: https://doi.org/btcmvz

Krishnamoorthy P, Goudar AL, Suresh KP, Roy P. Global and countrywide prevalence of subclinical and clinical mastitis in dairy cattle and buffaloes by systematic review and meta–analysis. Res. Vet. Sci. [Internet]. 2021; 136:561–586. doi: https://doi.org/g3v5tg

Jones TO. A review of teat factors in bovine E. coli mastitis. Vet. Rec. [Internet]. 1986; 118(18):507–509. doi: https://doi.org/fs47mx

Gonzalez RN, Jasper DE, Kronlund NC, Farver TB, Cullor JS, Bushnell RB, Dellinger JD. Clinical mastitis in two California dairy herds participating in contagious mastitis control programs. J. Dairy Sci. [Internet]. 1990; 73(3):648–660. doi: https://doi.org/bjcjtd

Miltenburg JD, de Lange D, Crauwels APP, Bongers JH, Tielen MJM, Schukken YH, Elbers AR. Incidence of clinical mastitis in a random sample of dairy herds in the southern Netherlands. Vet. Rec. [Internet]. 1996; 139(9):204–207. doi: https://doi.org/d4vqvv

Craven N. Efficacy and financial value of antibiotic treatment of bovine clinical mastitis during lactation – A review. Br. Vet. J. [Internet]. 1987; 143(5):410–422. doi: https://doi.org/g3v5tr

Çelik Ö, Sur E, Çetin H. Aydın ili Söke ilçesinde sütçü ineklerde subklinik mastitis prevalansının ve mastitise neden olan aerobik bakterilerin belirlenmesi [Determination of subclinical mastitis prevalence and aerobic bacteries causing mastitis in dairy cows in Soke district of Aydin]. Harran Üniv. Vet. Fak. Derg. [Internet]. 2021; 10(2):100–106. Turkish. doi: https://doi.org/g3v5tx

Özdemir S, Kaymaz M. Küçük aile işletmelerinde yetiştirilen ineklerde subklinik mastitis insidensi ve tanı yöntemlerinin karşılaştırılması [Comparison of diagnostic methods and incidence of subclinical mastitis on local breeds]. Atatürk Üniv Vet Bil Derg. [Internet]. 2013 [cited 12 Mar. 2024]; 8(1):71–79. Turkish. Available in: https://goo.su/3SKVAc

Özenç E. Afyonkarahisar’da aile tipi işletmelerde California Mastitis Test ile saptanan subklinik mastitis olguları ile ilişkili risk faktörlerinin belirlenmesi [Determination of risk factors associated with subclinical mastitis as detected by California Mastitis Test in smallholder dairy farms in Afyonkarahisar]. Kocatepe Vet. J. [Internet]. 2019; 12(3):277–283. Turkish. doi: https://doi.org/g3v5t3

Lago A, Godden SM, Bey R, Ruegg PL, Leslie K. The selective treatment of clinical mastitis based on on–farm culture results: II. Effects on lactation performance, including clinical mastitis recurrence, somatic cell count, milk production, and cow survival. J. Dairy Sci. [Internet]. 2011; 94(4):4457–4467. doi: https://doi.org/c63gmb

Birhanu M, Leta S, Mamo G, Tesfaye S. Prevalence of bovine subclinical mastitis and isolation of its major causes in Bishoftu Town, Ethiopia. BMC Res. Notes [Internet]. 2017; 10(767). doi: https://doi.org/gmq26g

Ijaz M, Manzoor A, Mohy–ud–Din MT, Hassan F, Mohy–ud–Din Z, Ans M, Saleem MI, Khan HH, Khanum F. An economical non–antibiotic alternative to antibiotic therapy for subclinical mastitis in cows. Pak. Vet. J. [Internet]. 2021; 41(4):475–480. doi: https://doi.org/g3v5t4

Wellnitz O, Wall SK, Saudenova M, Bruckmaier RM. Effect of intramammary administration of prednisolone on the blood–milk barrier during the immune response of the mammary gland to lipopolysaccharide. Am. J. Vet. Res. [Internet]. 2014; 75(6):595–601. doi: https://doi.org/f6xjvr

Ashraf A, Imran M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Anim. Health Res. Rev. [Internet]. 2020; 21(1):36–49. doi: https://doi.org/gmxmbm

Çokal Y, Konuş R. Subklinik mastitisli ineklerin sütlerinden aerobik bakterilerin izolasyonu [Isolation of Aerobic Bacteria from Cow Milks with Subclinical Mastitis]. Balıkesir Sağlık Bil. Derg. [Internet]. 2012 [cited 15 Apr. 2024]; 1(2):65–69. Turkish. Available in: https://goo.su/WLrhCb2

Gonçalves JL, Tomazi T, Barreiro JR, Beuron DC, Arcari MA, Lee SHI, Martins CM, Araújo Junior JP, dos Santos MV. Effects of bovine subclinical mastitis caused by Corynebacterium spp. on somatic cell count, milk yield and composition by comparing contralateral quarters. Vet. J. [Internet]. 2016; 209:87–92. doi: https://doi.org/f8dtjv

Türkyilmaz S, Kaynarca S. The slime production by yeasts isolated from subclinical mastitic cows. Acta Vet. Brno. [Internet]. 2010; 79(4):581–586. doi: https://doi.org/cw2wt2

Yapar N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk Manag. [Internet]. 2014; 10:95–105. doi: https://doi.org/gbfp2h

Published
2024-09-24
How to Cite
1.
Ucar EH, Peker C. Effect of Intramammary Hypochlorous Acid Administration on Subclinical Mastitis in Dairy Cows. Rev. Cient. FCV-LUZ [Internet]. 2024Sep.24 [cited 2024Oct.18];34(3):9. Available from: https://produccioncientificaluz.org./index.php/cientifica/article/view/42773
Section
Veterinary Medicine