Efecto de los protocolos de melatonina y melatonina más progestágeno sobre algunos parámetros de rendimiento reproductivo y sanguíneos al inicio de la temporada de cría en ovejas Hasmer

Palabras clave: Inicio del estro, malondialdehído, melatonina, progesterona, parámetros reproductivos

Resumen

En este estudio se investigaron los efectos de la melatonina exógena administrada por diferentes métodos al inicio de la temporada de cría sobre el inicio del celo, la fertilidad, los niveles plasmáticos de progesterona y la concentración de malondialdehído (MDA) en ovejas Hasmer. Para este propósito, las ovejas se asignaron a tres grupos: Grupo I (MEL): Administración subcutánea de 18 mg de melatonina (Regulin®, Ceva–Turquía). Grupo II (MELPRO): Administración subcutánea de 18 mg de melatonina (Regulin®, Ceva–Turquía) + esponja intravaginal que contiene 20 mg de acetato de flugestone durante 9 días (Chronogest CR®, Francia) + al retirar la esponja, PGF2α intramuscular (250 µg cloprostenol, Senkrodin®– Vetaş–Turquía). Grupo III (CON): Administración subcutánea de 1 mL de solución salina fisiológica para el efecto placebo. El estro se detectó utilizando carneros marcadores comenzando 24 horas después de las aplicaciones de melatonina (Grupo MEL), PGF2α (Grupo MELPRO) y solución salina fisiológica al 0,09 % (Grupo CON) dos veces al día (06:00 y 17:00). Las ovejas en estro fueron trasladadas a compartimentos separados y apareadas con carneros fértiles. Se tomaron muestras de sangre de la vena yugular el día de inicio del tratamiento, el día del apareamiento y el día 17 de la gestación. Los exámenes de gestación se realizaron entre los días 25 y 30 posteriores al apareamiento, y los como signo de viabilidad embrionaria /primordio cardiaco se monitorearon mediante una sonda lineal transrectal de 5–8 MHz en los grupos. No hubo diferencia estadística en el inicio del primer estro entre los grupos (P>0,05). La melatonina aumenta la concentración de progesterona el día 17 de la gestación en la temporada de cría natural (P<0.05).

Descargas

La descarga de datos todavía no está disponible.

Citas

Tamura H, Nakamura Y, Terron MP, Flores LJ, Manchester LC, Tan D, Sugino S, Reíter RJ. Melatonin and pregnancy in the human. Reprod. Toxicol. [Internet]. 2008; 25(3):291–303. doi: https://doi.org/c6dcxj

Atasoy ÖB, Erbaş O. Physiological effects of the melatonin hormone. Ist. Bilim Üniv. Florence Nightingale Tip. Derg. [Internet]. 2017 [cited 12 Nov. 2024]; 3(1):52–62. Available in: https://goo.su/JncWxc

Tsutsui K, Ubuka T. Discovery of gonadotropin–inhibitory hormone (GnIH), progress in GnIH research on reproductive physiology and behavior and perspective of GnIH research on neuroendocrine regulation of reproduction. Mol. Cell. Endocrinol. [Internet]. 2020; 514:110914. doi: https://doi.org/pb6m

Balík A, Kretschmannova K, Mazna P, Svobodova I, Zemkova H. Melatonin action in neonatal gonadotrophs. Physiol. Res. [Internet]. 2004; 53(Suppl. 1):S153–S166. doi: https://doi.org/pb6n

Ferlazzo N, Andolina G, Cannata A, Costanzo MG, Rizzo V, Currò M, Lentile R, Caccamo D. Is melatonin the cornucopia of the 21st century?. Antioxidants [Internet]. 2020; 9(11):1088. doi: https://doi.org/gmgbbz

Vlckova R, Posivak J, Valocký I, Sopkov, D, Andrejcakova, Z, Kostecka Z, Kozioł K, Seidavi A. Effects of short–term melatonin or progestogen with gonadotropic treatments on reproductive performance, hormonal levels and ovarian activity of ewes. Int. J. Vet. Sci. [Internet]. 2022; 11(4):493–497. doi: https://doi.org/pb6p

Xiao L, Hu J, Song L, Zhang Y, Dong W, Jiang Y, Zhang Q, Yuan L, Zhao X. Profile of melatonin and its receptors and synthesizing enzymes in cumulus–oocyte complexes of the developing sheep antral follicle—a potential estradiol– mediated mechanism. Reprod. Biol. Endocrinol. [Internet]. 2019; 17:1. doi: https://doi.org/pb6s

Tamura H, Takasaki A, Miwa I, Taniguchi K, Maekawa R, Asada H, Taketani T, Matsuoka A, Yamagata Y, Shimamura K, Morioka H, Ishikawa H, Reiter RJ, Sugino N. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal Res. [Internet]. 2008; 44(3):280–287. doi: https://doi.org/d6bgp7

Vazquez MI, Forcada F, Sosa C, Casao A, Sartore I, Fernández– Foren A, Meikle A, Abecia JA. Effect of exogenous melatonin on embryo viability and uterine environment in undernourished ewes. Anim. Reprod. Sci. [Internet]. 2013; 141(1–2):52–61. doi: https://doi.org/f49w4t

Tian X, Wang F, He C, Zhang L, Tan D, Reiter RJ. Xu J, Ji P, Liu G. Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach. J. Pineal Res. [Internet]. 2014; 57(3):239–247. doi: https://doi.org/f6hhr6

Şener G. Karanlığın hormonu: Melatonin [Hormone of darkness: Melatonin]. Marmara Pharm. J. [Internet] 2010 [cited 22 Oct. 2024]; 14:112–120. Turkish. Avaliable in: https://goo.su/AEsSh

Nagel C, Aurich C, Aurich J. Stress effects on the regulation of parturition in different domestic animal species. Anim. Reprod. Sci. [Internet]. 2019; (207):153–161. doi: https://doi.org/pb6x

Akbulut NK, Kal Y. Effects of tocolytic drugs (isoxsuprine hydrochloride) during the implantation period in pregnant sheep. Pol. J. Vet. Sci. [Internet]. 2022; 25(4):557–560. doi: https://doi.org/pb6w

Magarelli PC, Cridennda DK, Cohen M. Changes in serum cortisol and prolactin associated with acupuncture during controlled ovarian hyperstimulation in women undergoing in vitro fertilization–embryo transfer treatment. Fertil. Steril. [Internet]. 2009; 92(6):1870–1879. doi: https://doi.org/db6qnf

Wallace JM, Robinson JJ, Wigzell S, Aitken RP. Effect of melatonin on the peripheral concentrations of LH and progesterone after oestrus, and on conception rate in ewes. The J. Endocrinol. [Internet]. 1988; 119(3):523–530. doi: https://doi.org/bcmnxk

Abecia J, Forcada F, Zuniga O. The effect of melatonin on the secretion of progesterone in sheep and on the development of ovine embryos in vitro. Vet. Res. Commun. [Internet]. 2002; (26):151–158. doi: https://doi.org/fws46h

Özyurtlu N, Bademkıran S. Koyunlarda östrus senkronizasyonu ve östrusu uyarma yöntemleri [Estrus synchronization and ınduction of estrus methods in sheep]. Dicle Univ. Vet. Fak. Derg. [Internet]. 2010 [cited 1 Dec. 2024]; 1(1):17–22. Turkish. Available in: https://goo.su/50VLL

Fernandez J, Bruno–Galarraga MM, Sot AT, de la Sota RL, Cueto MI, Lacau IM, Gibbons E. Hormonal therapeutic strategy on the induction of accessory corpora lutea in relation to follicle size and on the increase of progesterone in sheep. Theriogenology [Internet]. 2018; 105:184–188. doi: https://doi.org/pb8v

Buege JA, Aust SD. Microsomal lipid peroxidation. In: Fleischer S, Packer L, editors. Methods in Enzimology [Internet]. Cambridge (MA, USA): Academic Press; 1978. p. 302–310. (Vol. 52). doi: https://doi.org/cgmt6k

Kutlu M, Doğan H, Durmuş, M. The relationship of anogenital distance with fertility and anti–müllerian hormone in Awassi and Cukurova meat ewes. Small Rumin. Res. [Internet]. 2024; 241:107390. doi: https://doi.org/pb8w

International Business Machines Corporation (IBM). Released 2015. IBM SPSS Statistics for Windows, Version 23.0 [Internet]. Armonk (NY, USA): IBM Corp; 2015 [cited 1 Dec. 2024]. Available in: https://goo.su/RTzscym

Zarazaga LA, Gatica M, Celi I, Guzman J, Malpaux B. Artificial long days in addition to exogenous melatonin and daily contact with bucks stimulate the ovarian and oestrous activity in Mediterranean goat females. Animal [Internet]. 2011; 5(9):1414–1419. doi: https://doi.org/fkdznz

Kusakari N, Ohara M. Effect of melatonin feeding on early onset of reproductive activity in postpartum Suffolk ewes lactating during anestrous season. J. Reprod. Develop. [Internet]. 1997; 43(1):97-100. doi: https://doi.org/fwqmrq

Guan S, Xie L, Ma T, Lv D, Jing W, Tian X, Song Y, Liu Z, Xiao X, Liu G. Effects of Melatonin on Early Pregnancy in Mouse: Involving the Regulation of StAR, Cyp11a1, and Ihh Expression. Int. J. Mol. Sci.. [Internet]. 2017; 18:1637. doi: https://doi.org/gbxzbz

Zhang L, Zhang Z, Wang F, Tian X, Ji P, Liu G. Effects of melatonin administration on embryo implantation and offspring growth in mice under different schedules of photoperiodic exposure. Reprod. Biol. Endocrinol. [Internet]. 2017; 15:78. doi: https://doi.org/gb2q4z

Haresign W. The effect of implantation of lowland ewes with melatonin on the time of mating and reproductive performance. Anim. Sci. [Internet]. 1992; 54(1):31-39. doi: https://doi.org/fj8j4d

Leyva–Corona JC, Angulo–Valenzuela NI, Laborin–Escalante BM, Gastelum–Delgado MA, Silva–Avila NJ, Luna–Nevárez P, Aragón–López CE, Sánchez–Castro MA, Morales–Pablos MI. Reproductive performance of hair ewes and rams implanted with Melatonin previous to the anestrus season in Northwest Mexico. Trop. Anim. Health Product. [Internet]. 2023; 55(3):174. doi: https://doi.org/pb84

Abd–Allah M, Daghash MWH. The role of exogenous melatonin and photoperiod on productive and reproductive performance of Ossimi sheep. Egypt. J. Sheep Goats Sci. [Internet]. 2019[cied Dec 13 2024]; 14(3):49-58. Available in: https://goo.su/royIn

Fang L, Li Y, Wang S, Yu Y, Li Y, Guo Y, Yan Y, Sun YP. Melatonin induces progesterone production in human granulosa–lutein cells through upregulation of StAR expression. Aging [Internet]. 2019; 11(20):9013-9024. doi: https://doi.org/pb89

Taketani T, Tamura H, Takasaki A, Lee L, Kizuka F, Tamura I, Taniguchi K, Maekawa R, Asada H, Shimamura K, Reiter RJ, Sugino N. Protective role of melatonin in progesterone production by human luteal cells. J. Pineal Res. [Internet]. 2011; 51(2):207-213. doi: https://doi.org/c7h8kb

Ma J, Wang J, Hu S, Li Y, Zhang Y, Yang Y, Yang C, Huo S, Yang Y, Zhaxi Y, Luo W. Effects of melatonin on development and hormone secretion of sheep theca cells in vitro. Theriogenology [Internet]. 2023; 198:172-182. doi: https://doi.org/pb9b

Horoz H, Kaşıkçı G, Ak K, Alkan S, Sönmez C. Controlling the breeding season using melatonin and progestagen in Kıvırcık ewes. Turk. J. Vet. Anim. Sci. [Internet]. 2003 [cited 19 Nov. 2024]; 27(2):301-305. Available in: https://goo.su/qV2S1

Fan W, He Y, Guan X, Gu W, Wu Z, Zhu X, Huang F, He H. Involvement of the nitric oxide in melatonin–mediated protection against injury. Life Sci. [Internet]. 2018; 200:142-147. doi: https://doi.org/gdd6c8

Morvaridzadeh M, Sadeghi E, Agah S, Nachvak SM, Fazelian S, Moradi F, Persad E, Heshmati J. Effect of melatonin supplementation on oxidative stress parameters: a systematic review and meta–analysis. Pharmacol. Res. [Internet]. 2020; 161:105210. doi: https://doi.org/gr5szn

El–Sawi MR, Badawy ME, El–Gharieb NM. Role of melatonin in modulation of oxidative stress induced by delta–aminolevulinic acid in adult male albino rats. Egypt. J. Hosp. Med. [Internet]. 2007; 28(1):233-272. doi: https://doi.org/pb9c

Pertsov SS, Koplik EV, Kalinichenko LS, Alekseeva IV. Effects of melatonin on lipid peroxidation in blood in rats with different behavioral characteristics in acute emotional stress. Neurosci. Behav. Physiol. [Internet]. 2016; 46:133-137. doi: https://doi.org/pb9d

Pasqualotto EB, Agarwal A, Sharma RK, Izzo VM, Pinotti JA, Joshi NJ, Rose B. Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertil Steril. [Internet]. 2004; 81(4):973-976. doi: https://doi.org/dj3dpv

Publicado
2025-03-31
Cómo citar
1.
Akbulut NK, Kırbaş M, Harman H, Yavuz H. Efecto de los protocolos de melatonina y melatonina más progestágeno sobre algunos parámetros de rendimiento reproductivo y sanguíneos al inicio de la temporada de cría en ovejas Hasmer. Rev. Cient. FCV-LUZ [Internet]. 31 de marzo de 2025 [citado 4 de abril de 2025];35(1):6. Disponible en: https://produccioncientificaluz.org./index.php/cientifica/article/view/43697
Sección
Producción Animal