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ABSTRACI' 

In recent times (~,A) - designs and related configurations have 

been discussed by many authors in many contexts. Because these eon

figurations have both mathematical and praetical interest, it is the 

purpose of the present paper to bring together several of these re

sults. Related configurations include the /). - systems of Erdos and 

Rado, and balanced equidistant codes and equidistant pennutation ar

rays . 
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RESJMEN 

Recientemente han sido discutidos por varios autores en dife

rentes contextos, diseños t~,A) y configuraciones relacionadas. Como 
estas configuraciones tienen interés matemático y también práctico, 

el objeto de este trabajo es tmificar algtmos de estos resultados. 

PJnfiguraciones relacionadas incluyen el sistema - 11 de Erdos y Ra

do J códigos equidistantes balanceados y arreglos penrutacionales e

quidistantes. 
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1 . 	 IN'IRODUCITOO 

The designs discussed in tbis paper arise naturally in many ar

eas of combinatorial theory , especially coding theory and COUl

binatorial design theory. In the case A= 1, they are a subclass of 

the class of pairwise balanced designs , the latter being a central 

tool of design theory. Al though a thorough discussion of this sub

ject is beyond the scope of the present survey, the reader is re 

ferred to the works of Wilson [41], [42], for fundamental results in 

this aTea. Although there are many otber papérs en this top- c, ref

erences to these are omitted since our main concem 15 with 111., AJ 

systems. These systems have also arisen in the theory oí balanced 

equidistant codes, see [lJ , [29J, etc. Sorne of the Tesults cited in 

this survey are basic to the establishment of good bounds for the 

dictionary size oí such codeso Furtber, the use of (11.,>") - systems in 

mltiplexing schemes has recently been investigated. MoreoveT it has 

been shown recently [20] that the more general class of (It,>") 

systerns 15 Tequired to yield the extremal configurations for the 

Doehlert-KIee problem [13J ; prior to this it appeared that the sub

class of (It,A) - designs known as BIBD' s (discussed below) contained 

the required configurations. 

2. PRELIMINARIES 

.An (IL, A) - design. V (regular pairwise balanced design) 15 a 

system consisting of a finite set V of elements (called varieties) 

and a collection B of subsets of V (called blocks) such tOOt 

(1 ) every pair of distinct varieties is contained in precisely 

A blocks. 

(2) 	 every variety is contained in exactly It blocks. 

Subsequently, we let v, b, YL denote !he number of varieties, num

ber 	of blocks and It - A respectively. 

A balanced incomplete block design (BIBD) is an (IL, A) - design 
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in which every block has the s3J1le cardinality (size) k and for which 

11.. > A> O. TIle numbers Iv, b,11.., k, >..} are called the parameters of the 

block designo BIBD's have recei ved a great deal of attention and 

there is extensive literature on the subject. Again, a detailed sur

vey of BIBD' s is beyond the scope of a single paper and so we re

strict ourselves to the more general (It,A) - designs. It should be 

noted that the deletion of a ;t- subset of varieties froro a BIBDwith 

parameter set Iv,b,lt,k,AJ gives an 11l.,AI-design on v -;t varieties. It 

is not true however that every (Jt, >.. ) -design is obtainable in this 

manner. An example of the latter type of design can be fot.md in [30J. 
H.J. Ryser [29J has shown that for any (It,A) - de5ígn V if b = v 

then ). (v-1) = 1t(1t-1) and that V is a RIBO with block size IL. FrOID 

tbis or otherwise i t can be ShOWIl tbat for any (11.., A) -design, b ~ v. 

An (It,>..)- design is c~ed elliptic, parabolic or hyperbolic accord

ingly as the expression ).(v-1) - Jt(Jt-1) i5 negat ive, zero or posi 

tive. An (It,A)- design V i5 said to be reducible if V contains a 

block containing all varieties (called a complete block) or a set of 

v blocks each of 5ize one wh05e union is V (called a complete set of 

singletons) . If V is not reducible then it i5 irreducible. 1t was 

shown:in [30J that all irreducible designs with A = 1 are elliptic 

or parabolic. This is no t true in general for ). > 1. This wiIl be 

discussed in greater detail in section 5. 

Let V be an (Il,). ) -design defined on tlie variety set V. V' is 

called a restriction of V to V' if V I e V and V' is obtained from V 

by deleting the varieties of V/V' from the blocks of V. We will in

troduce other definitions as they are required. 

3. EMBEDDINGS 

By definition, an (1L,).l-de5ign V is embecldable in an (Jt.)')-de

sign V' if V is isomorphic to some restriction of V' . The first re

sult we cite concems the embeddability of a BIBD with pararneters 

(v,b,IL,k,A) in an (Jt,A) designo The proof of Theorem 2.1 appears in 
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[30J. 


THEORIM 3. 1 A BIBV w.Wt pcvr.ame:tw (v,b,Jt,k.,AI c.an be embed.ded 

.&t an (IL, A) -du,ign onllj ¡ó k cUvi.du IL-A. 

AA (1L, A) -design is called trivial if i t contains A complete 

blocks; otheoose , it is called non-trivial. For any non-trivial 

(lL,l )-design, it can be shown that the rnaximum number of varieties 

is n2 + n + 1, and any non-trivial (Il., 1)-design attaining this is a 

finite projective plane of order n. What can be said about embedding 

11l.-7 ) -designs into these extreme configurations? The following two 

theorems provide some results in this area. 

THEORfM 3.2 16 V.i..6 a. non-.tJúv.i..a1.. (lt,l)-duign hav.úLg v~n2 +n 

vaJÚw..u a.nd b .5..n2 + n + 1 bioc.k6 an.d. V con:t.a...i.M a. block 06 l>.ue It - 1 

:the..n V .u embedd.a.bie .in ay¡ (11., l)-duign on v+ 1 valtie.:U..e.6. 

If the number of varieties v in a non-trivial (lI.,l)-design V is 

such that n2 ~ v ~ n2 + n then a sharper resul t is possible. Tbís is 

statedas 

THEOREM 3.3 16 V 1..6 a. non-.tJúvw (lI.,ll-duign on v vaJLiw..u 

wheJte.. n2 ~ V ~ n2 + n :titen V .i..6 embeddab.te in a. fri.yWte.. pJt.oj e.c.:U.ve 
2pla.ne 06 olLdeJt n. (Le... , a BTBV w,i;th paJr.ame;t(UU¡ (n 2 

.,. n'" 1, n .,. n + 1, 

n +7, n.,.J, 1) . 

A proof of Theorems 3.2 and 3 . 3 can be fmmd in [39J. Theorem 

3.3 has recently been strengthened' i t has been shown [22J tbat if V 

is a non-trivial (11.,1) -design having v ~ n2 
- a varieties where 

a < In/2 then V is embeddable in a finite projective plane of order 

n. 
A particular1y important class of design in embedding theorems 

is the (2 n, n )-designs . For such designs, we have the following theo

rems. 

http:e.c.:U.ve
http:embeddab.te
http:non-.tJ�v.i..a1
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TIffiOREM 3.4 1~ V i6 o. non-:tJúv,lal (2n,nl-du.ign ha.ving v vo.
2 n2Jri..e;Uu wheJle n + 7 ~ v ~ + n :the.n V ió embe.ddab!e i.n. o. non

2ruv.<o1.. (2n, nI -du.i.gn ha.vi.n.g tt + n + 1 Vl1.lÚe:Uu. 

1t was shown by J.H. Van Lint [31] that' the existence of a non

trivial (2n,n)-design on tt2 + n + 1 varieties implies the existenee 

of a finite projective plane oí order n. A generalization oí thi s 

result appears in [16J and [36J. We state it as 

'llJIDREM 3.5 TheJte. exLtd.h a non-tJúv.i.ai. (2n,nl-du.ign having 

v = n2 + n + 1 - el v~u whCVle el .s. 2n- 4 ,U6 t:hCVle e.xi.hú a. non

:tJúv.i.ai. (n+ 1 , 1 ) -du.tgn havblg v vl1.lÚe:Uu. 

This result was independently proved by J.1. Hall [16J where he 

. n2 -2n-2
shows i t 15 true for a..$. 2 . 

1t is elear that Theorem 2.5 wiIl provide us with a non-exis

tenee result for (2n,n) - designs when no finite projeetive plane of 

order n exists. As was mentioned earlier, the (2n,n) -designs are a 

very important c1ass oÍ (Jz.,AI-designs. Any (It,A)-design V on v va

rieties implies the existence of a (Zn,n) -design on v - 7 varieties . 

Beeause of this relationship one might expect that there i5 . an 

embedding theorem for (Jt,A)-designs (A > 1) similar to Theorem 2.4. 

This i5 not in general true. In [37J, it is shown !hat there exist 

n2non-trivial (It, A )-designs on + n varieties whieh eaImot be 

embedded in any (1t,A) -design en n2 + n + 1 varieties. 

4. UPPER BOUNDS 

Define the Metían V IIt,A) to be tite smallest positive integero 
sueh that if v > vo{Il,A) then the only (Il,A)-designs on v varieties 

are trivial. Thi5 funetíon was first introduced by V. Chvátal [4J. A 
related ftmetion introdueed in [15J is v (Il,A) , is the smallest pos

l 

itive integer such that if v > v (Il,A) then the only (It,)')-designs
l 

on v Yarieties are reducible. Finally, v (1t,1) which appears in 
p 

http:tJ�v.i.ai
http:non-tJ�v.i.ai
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[251 is the largest positive integer such that there exists a non

trivial {lI.,l J-design V on vp (It, 11 varieties in which the number of 

blocks in V is less thanor equal to n~ + n + 1. 

Little is known about v1 (It, ) and vp lit, 1) . However , a good 

upper bOl.md for V (It,A) is known and the following inequalities hold. o 

and 

StatoÍl and Mullin [30] gave the following botmd for V (It, 1J • o 

rnEORDI 4.1 Folt any po.6Ltive. bttegeJL IL 

Applying the strengthened version of Theorem 3.3, it is possible 

to improve theorem 4.1. 

'Il-IIDRFM 4.2 FOIL tmlJ po.6.i.itive. .i.nteg eJr. It. 

n2r.lJ V lit, 1) = .,. n .,. 1 ió n i.6 t:he OMeJr. 06 a. {y(..n.i.J;e. pItOjeJ!tive.o 
plane.. 

(U) V (It, 1) ~ n~ - a .l6 a < .fñT2 a.nd n .i.6 not: :th.e. OMeJL 06 (1 fPLi,.t.eo 

pIlO j e.c.t.ive. plane. 
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The first case of interest far theñmction v (1t,1) occurs when o 
n = 6, since it is well known that no firrite projective plane of or

der 6 exists. It has been shown [27J, [18J that v (1,]) = 31. '!'heo
on1y example known of a non-trivial (7,1) - design on 31 varieties is 

obtained by adding a complete set of singletons to the finite pro

jective plane of order 5. It has been shown ([23], [24J , [25} , [26J 1 

that this is the only way of obtaining a non -trivial (7, 1 ) - design 

on 31 varieties. Thus VI (7,1) < 31. Tt is shown in [26J that 

25 5.. vP17 JI) _ 28, and thus if there exists a non - tri vial irreduc

ible (1,11- design on 30 varieties it nrust contain at least 44 

blocks. 

For A > 1, the following result on V (IL,A) appeared in [28].o 

TIIEOREM 4.3 FOIL po~i.,:Uve i.n;tegV!l. IL and A, .6u.ch tha.t 

1\ ~ ~ ~2 + ~ _ 1, v o (~'L, 1\'J -- ,1\ + ,.,. 2• 

The lit, A) -designs which have A ~ n2 + n - 1 and v = A + 2 have 

been completely characterized [28J . They have block sizes of 1, v - 1 

and v onlyand thus are called near-ttivial. This notion of neartri~ 

ial has been generalized [6J to z-trivial designs. A ,-trivial (It., AJ 

design has only block sizes 

1,2, ••. , [; +1].V-Z.V = Z+I, •••• V-1.v. 

Clearly a O-trivial design is trivial, a 1-trivial is near-trivial 

and any z-trivial is a ,+ i.-trivial design for i. a positive inte

ger. A few results on z-triviality have been obtained [6] but tbis 

concept has been by no means explored fully. 'file only designs satis

fying the hypothesis of Theorem 4.3 are either O-trivial or 1-trivi

al. 

'Í'heorem 4.3 and a ftmdamental result in [S] concern.ing block 

I 
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sizes of {2n,nl-designs leads to 


THEORfM 4. 4 FOJL any pO.6ilive WegeM JL artd A (JL > A) 

A proof of this appears :in [40J . Recently this resul t has been 

improved ([22J). 

THEOREM 4.5 FOJL aYUJ po.6..u,¿ve bttegVL.6 JL a.n.d A (Jt > A) 

(i) VO(Jt,A) :: A + 2 i.6 A ~n2 + n - 1. 

n2fU) v (JL,A) :: + n + 1 i6 A < n2 + n - 1 and n i...6 t.he oJtd.eJI. 06 o 

a 6f.n.(.te. pMje.c;Uve. plane.. 


2(.u¡) V (IL, Al ~ max {A .t 2, n - 1} -i6 n i...6 not. t.he. aJLdeJI. 06 a 6.út-Ue.o 
pILO j e.ctive p.ta.ne.. 

As was mentioned earlier, little is known about the functions 

v
1 

(IL,A) and vp(Jt, 1). One result on VI (JL, A) appears in [37J. 

THEOREM 4.6 Lú n :: Jt - A. The.n 

} (JL,>"1 :: n2 + t't + 1 
1 

-ió 6 n i...6 t.he. OII.deJI. o6 a (yúú;tR. pILa j e.clive. pR.a..ne. and IL i...6 e.qual t.o 
one. 06 n2 

, 2n alL n ,+ 1. 

Other results en V1(IL,A) can be fotmd in ([15], [28J). 

http:pR.a..ne
http:6f.n.(.te
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S. (Jr.,A}-DESIGNS AND eODES 

For a much broader study of· the ideas in this section the 

reader is referred to OJ. A block code of length n, size N and dis

tance d over an alphabet Aof q symbols is a collection of vectors 

with entries from A of length n such that the Hamming distance (the 

munber of components in which two vectors differ) between any two 

vectors is at least d . N is the munher of vectors in C. Aftmdamental 
result in this area is the Plotkin bOl.md. CTheorem 5. 1) . 

TI-IEOREM S. 1 1n a. bloc.k c.ade. e a6 le.ngt1t n, h.[Ze. N and cLi..6ta.nc..e. 

d ex.iA:á I tite.n 

d ~ nN(tt- 11 
(N-1)q 

Let V be an (It, AI-design V having v varieties and b blocks. De

fine the v x b matrix (incidence matrix of V) 

1 .[6 v. e B. 
-<.. j 

a .. " 
-<..} 

One can consider the rows of A as binary codewords of a block 

code of lengtb b and size v. The distance between any two codewords 

is precisely 2 (It,A) and every codeword contains precisely It ones. 

Such codes are called equidistant -'equiweight block codes ánd are 

equivalent to the incidence matrix of (1l,A) -designs. Many results on 

(It, A) -designs have been given using the notation of equidistant 

codes. The reader 1s referred to [6], [16], [171, [31]. 
J. Hall [1 7] , using the equidistant-equiweight code approach, 

was able to settle a conjecture oE Stanton-Mullin. Recall from sec

tion 1 that Stanton and M..1llin had ShOWIl that any (Jt,l) - design was 

either elliptic or parabolic. They conjectured that this was also 
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true for any (IL, Al-design which was irreducible. Hall proved the 

conjecture for A = 2 and found cOl.D1terexamples for A ~ 3. 

The proof of theorem 4.4 relies heavily on an inequality for 

bOlmding the block sizes in (2n,nl-designs. This inequality carne as 

a result of studying equidistant codes [5J . One has the advantage of 

using the Hanmting distance properties of the code which is not an 

evident property of the correspondllg (IL, A) -designo 

Before ending this section, we mentíon that if equality holds 
in the Plotldn bound of Theorem 5.1 , then í t can be shown that the 

code can be used to produce a very particular type of BIBD.The reater 

is referred to [1] for details. 

6. f¡-SYSfEMS 

A strong ~- system is a set of subsets {SI' S2' ••• , Sn} from a 

f:inite set such that Is.1 :: :t for each 1. and such that tbere exists 
.(. 

a set L with the property that S,¿ n Sj :: L for all J.. I j . The fol

lowing theorem is due to ErdOs and Rado [14]. 

THEOREM 5. 1 TheJle. ~ o. 6une.:t.i.on cp (m ,:tl ~1.Lc.h tho.:t e.veJtrj 

6am.i.i.y S1' S2' "', scp 06 ¿,úA w,Uh ISi. \ :::t e.o~ o. ¿'WYIfj 

f¡-¿,y¿,:te.m ha.vi.ng mM.e. :tha.n m ¿,W. 

Erdos anrl Rado showed tbat m:t < <p (m,.t) < :t! m:t 

Tbis was later improved by Chvátal [4J and by Abbot and Hanson to 

Chvátal deduced the Erdos-Rado theorem from Ramsey's theorern 141 by 

introducing the idea of a weak f¡-system. A weak Li-system js a collec

tion of subsets S , S , "" S from a finite set such that Is·1 :: :t 
1 2. m A.. 

far each i. and such that there exists an integer 9. with the property 

http:ha.vi.ng
http:6une.:t.i.on
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that Is.¿ n s j i = 9. for all .¿ I j . As an example, every fini te pro

jective plane is a weak ~ -system but not a strong ~-system. Clearly, 

every strong 6-system is a weak ~ -system but the converse is by no 

means true. The converse is true, however, when the number of 

subsets in the weak .6. -systern is large. lf one considers the so called 

dual of a weak .6. -system (i.e. , let the subsets be elements and ele 

ments be subsets such tbat an element is in a subset if the original 

subset contained the elernent associated with the new subset). Then 

one obtains an (~,Al-design with ~ = t and A = t. Hence, all of the 

results of sections 2 and 3 are applicable to weak .6.-systems. 

We end this section by mentioning that P. Erdos conjectures 

that 

<j¡(m,tl < (Cm) t 

for sorne absolute constant C. He offers a prize of one thousand dol

lars to anyane who can settle the question. 

7. SOME GENERALlZATIONS OF v o (~, A) • 

The basis of sections 2 and 3 is the study of the function 

V (It, A) . Recall that it is the smallest positive integer such thato 
if v > VO(~IA} then the on1y {It,A)-designs on v varieties are triv

ial. Below we will give a number of generalizations and specifica

tions of this function. 

(1) Instead of an (~, A) - design , suppose we consider a collection 

B of blocks from a v-set V such that every variety of 11 is con

tained in ~ blocks oí B and any distinct unordered pair of va

rieties is contained in A blocks where A € {A l ' A2' •.. I \} and 

Al <A.2 <Aa < o <A.6 <1t.We call such a system an (~I{\' A
2 

, ••• ,A.6})

designo These designs have been studied in [10J and [11J. When.6 = 1 
it is clear that we have an (~,A)-design. In what follows we re

strict OUT discussion to the case .6 = 2 since it is quite different 

from.6 = 1 and gives the flavour of the more general situation. 
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Let V be an (Ir., {Al' A2}l-d~sign having b blocks. By results of 

Deza D1J, we know that there exist minimal functions e , e ,e and 
1 2 3 

e
4 

of Ir., Al arrd 1.. 
2 

such that 

Ca) If v > el b, then V contains \ complete blocks. Notice that in 

the case of an (Ir., Al - design the same phenomena occurs but that the 

size of v díd not depend on b. 
lb-Al) (b-\) 

(b) 	 If v < e2b then v ~ In the case when we have an 
(Il.-A

l 
) (Jt '- \~) 

b-)..
(Il,AI-design if v > VoIA,A) then v = 

Ce) I f v > C
3
b, let SI' S2' ... , BIl be the blocks containing a va

riety x.Then B1/{x}, S2/{X}, "', SJt/{x} is a trivial 1"1,A21-design 

having A b 1 ocks and Il- Al varieties. Again, in the case o f an lit, A) 
1.. -1..

2 

design Vo(Il/A) takes the role of Cabo As a consequence of the aboye, 

we have tbat lA - A 1111l - A !. 
2 1 1 

Cd) If v>Cl+b then there exist x,y e v lx/y) and x',y' € V(x' Iy') 

such that x,y are contained in Al blocks and x' ,y' are contained in 

1..2 blocks of S. In other words, for V sufficient1y large both Al and 

"2. must be realized for sorne pairs of varieties. This property has 

no meaning in the case of an (Ir., A ) -design . 

As was indicated above, the four functions, el b, e 2 b, eab and 

C,+b all collapse to vo(II.,"1 in the case of an (Il,A)-design, Good 

estimations of V (It, A! are known but 1ittle can be sáid about el'o 
C2, Ca and C except that they are well defined.4 

Few results en the aboye generaliza tions are known even in the 

case of ~ = 2 • One does not even have an estimation of their magni

tudes relative to each other. However , ?-n [11J the following was ob

tained as a generalization of the Fisher inequality for (Il,,,)-design 

as applied to (11., {O, A 1!-designs. 1t was shown that if b > v in an
2 

(Il, {O, A2.1)-design then 1..211/.. In this case, we see that Ca = 7 for 

an (Il, {O, A2})-design. The dual of the locally symmetric designs of 

Cameron [3J give an example o[ an (Il, {O, A })- design wi th v > b but 
2 

not having the property that the design formed frOID the blocks con
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taining a given variety is a trivial (A , al-design. Other examples
2 

of {~, {D, A
2 
}I-designs are the dual of a BIBD (tbis is a (k,{O,l})

design) and the dual of any affine resolvable design. 

One further generalization is in the following area. We call a 

collection of blocks B ÍTem a v-set V, an (Il, Al' ).2) -des-ign if 

every variety occurs in Ir.. blocks of B, every distinct unordered .pair 

of varieties in Al blocks and every distinct' Lmordered .3-set occurs 

in A2 blocks. If we do not require the condition for Al then we 
write lit, -, A } -designo It is clear that th~ conmtion on A does

2 2 

. not imply the condition on \ . The aboye definitions can easily be 

extended. to \, \, ... , A;t if desired. From remark 5 of [6] and 

Theorem 9 of [11J it follows !hat there exist minimal ftmctions 

el lit, A ,A } and e (It,A2) such that 
. 1 2 2 

(a) If v > el then any (,1[" Al ' A ) -design contains 1. complete
2 2 

bloas. Deza and Frankl [7J conjecture that el = o(It). Vanstone [35J 
has shown that C = O(It-A) . 

1 

(b) If v > C
2 

then any (Jt, -, \) -designhas A
2 

complete blocks. 1m 

interesting question is Whether or not VO(Jt,A) > C2 (Jt,A2 
). 

8. EQUIDISTAN!' PERWl'ATION ARRAYS 

In this section, we present another closely related problem 

which was introduced by D.W. Bolton [2J. 

An equidistant peIlllUtation array CE.P.A.) is a v x Jt array in 

which every row is a penm.ltation of the integers 1,2, •.. ,It and such 

that any two distinct rows of the array have precisely A columns in 

conmon. We denote such an E.P.A. by A(It,AjV). Define R(IL,A} to be 

the largest value oí V for which there exists an A(It,A;V). 

A resolution R of an [It, A) -design V is a partitioning of the 

blocks into classes (called resolution classes) R
1 

, R
2 

, ••• , R~ suCh 

that each variety oí V is cootained in precisely ane block of each 

R.(., 1 ~,¿ ~ IL. An (IL, A) -design V is called orthogonal ií there are 

tñ'O resolutions R, R' of V such that any resolution class oí R haS 
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at most one block in common with any resólution class of R' . The 

following result appears ID [9J . 

... 
TI-IEOREM 6.1 TheJLe. ex.J.l,ú an A(JL,>'jv) innthvr.e. e.U..óú an 01L

thogonai. (IL., A)-de.6ign having v vaJÚmu. 

As a consequence of this, the upper bounds of section 3 on 

V (11.,>') can be applied to RIIL.,>.I. The first general bounds foro 
R{IL.,A) where obtained in [6]. It should be noted that orthogonal 

(II., A) -designs fonn a very particular class of (IL, Al -designs and 

hence in many cases the upper b01md for V IJr.,AI rnay not be a partico 
ularly good bOlmd for R{JL,A). For instance, it can be shown [8] that 

R(Il, 1) .$. 11. 111.-3) • 

However, it should also be mentioned that 

RIA+3,AI = )..+2 for all A ~ 12. 

A number of results concerning E.P.A.s have been obtained. The 

interested reader if referred to [6], [8], [9J, [191 and [38J in the 

bíbliography. 

One can generalize the idea of an E.P .A. by asking that any two 

dist:inct rows of the array have at least Cat mast) A coll.DllDS in 

cOIJIIlOn. Analogously one can define R(Il, >X) (R(Il, <Al) to be the max

:imum number of rows in such an array. SUch arrays have been investi 

gated C[6] , [7J) . 

9. S(J.fE OPEN PROBLPMS 

We list a number of problems which rema:in apeno 

1. 	 What are the values of VI 17, 1) and vp (7 ,1) ? 

2. 	 Is vo(Il,).) = voln+7,1) for small A where n = IL - ).? 

3. 	 Ii n is not the order of a f:inite projective plane then, is 

vo(n+l,l) = q2 + q + 1 wnere q is the largest integer less than 

n for Which there exists a finite projective plane of order q? 

4. 	 Is cIIlm,.t)· < (Cml.t' for sorne absolute constant C? 

S. 	 Let T be a set of resolutions of an IIL,A) -design with the prop

erty that any two resolutions of Tare orthogonal. It 15 known 
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[8J that Ir l ~ ~ - A. Is this the best possible? 
6. Findgoed estimates fer the ft.mctions VO!It,A), V1(IL,A ) , v (IL,1 1,p 

R(IL,A), R(It,~A J , R(Jt,~AJ, C , C , C~ and C ... 
l 2 
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