
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 1, 2021, January-April, pp. 04-58
42
Aguilera and Goncalves
It did not focus on the discovery of groups since they are
The experimental study shows that the proposed
clustering mechanism, integrated into a database engine,
the case of the count_prel function, in which it is necessary
to execute additional queries for cardinality calculations.
Therefore, the greater the volume of records that the table
has, the more load is added to the execution time.
As future work, two key points are to be
considered in order to enable more complete fuzzy
aggregation functions: the implementation of the Fuzzy
of the HAVING clause for the fuzzy query evaluation,
in addition to implementing the count-g aggregation
function.
Acknowledgement
We thank professor Ralph Grove, a friend in
Norfolk, VA who helped us with the editing of this paper.
References
[1] Bosc P. and Pivert O.: “SQLf: a relational database
language for fuzzy querying”. IEEE Transactions
on Fuzzy Systems, 3(1), (1995)1-17. https://doi.
org/10.1109/91.366566.
[2] Bosc P. and Pivert O.: “SQLf Query Functionality on
Top of a Regular Relational Database Management
System”. Studies in Fuzziness and Soft Computing,
(2000), 171-190.
[3] George R., Petry F. E., Buckles B. P. and Srikanth
R.: “Fuzzy database systems—challenges and
opportunities of a new era”. Int J of Intelligent
Systems, Vol. 11, No. 9, (1996), 649-659.
de bases de données: expression et évaluation de
Université de Rennes 1.
[5] Galindo J., Urrutia A. and Piattini M.:
“Representation of Fuzzy Knowledge in Relational
Databases”. Fuzzy Databases: Modeling, Design
and Implementation, (2006), 145-170.
[6] Goncalves M. and Tineo L.: “SQLf3: an extension of
SQLf with SQL3 features”. In Proceedings of 10th
IEEE International Conference on Fuzzy Systems,
(2001), 477-480.
[7] Sanchez, H.R., Sarango, D.E. and Cucuri, M.I.:
“Evaluación de un sistema de alimentación avícola
basado en lógica difusa”. Revista Técnica de
Ingeniería Universidad del Zulia, Vol. Especial, No.
1, (2020), 3-10.
[8] Bosc P. and Pivert O.: “On a fuzzy group-by clause in
SQLf”. International Conference on Fuzzy Systems,
(2010), 1-6.
[9] Aguilera A., Cadenas J.T. and Tineo L.: “Fuzzy
Querying Capability at Core of a RDBMS”.
In Advances in Data Mining and Database
Management, IGI Global. Hershey, 2011, 160-184.
[10] Bosc P. and Galibourg M.: “Indexing principles for
a fuzzy database”. J. Information Systems, Vol. 14,
No. 6, (1989), 493-499.
[11] Pivert O. and Bosc P.: “Fuzzy Group By”. In: Fuzzy
preference queries to relational databases. World
[12] Timarán R.: “Arquitecturas de Integración del
Proceso de Descubrimiento de Conocimiento con
Sistemas de Gestión de Bases de Datos: un Estado
del Arte, Ingeniería y Competitividad”, Vol. 3, No. 2,
(2001), 45-55.
[13] Smits G., Pivert O. and Girault T.: “ReqFlex: fuzzy
queries for everyone”. Proc. VLDB Endow., Vol. 6,
No. 12, (2013), 1206-1209.
[14] Aguilera A., Cadenas J. and Tineo L.: “Rendimiento
de Consultas SQLf en arquitecturas débil y
fuertemente acopladas”. Revista Multiciencias,
Latindex Venezuela, Vol. 11, No 4, (2011), 410-415.
[15] Cadenas. J.: “Una contribución a la interrogación
USB, Caracas, Venezuela.
[16] Rosenfeld A.: “Fuzzy groups”. Journal of
mathematical analysis and applications, Vol. 35,
No. 3, (1971), 512-517.
[17] Zhang C. and Huang Y.: “Cluster By: a new
sql extension for spatial data aggregation”. In
Proceedings of the 15th annual ACM International
Symposium on Advances in Geographic
Information Systems, (2007), 1-4.
[18] Li C., Wang M., Lim L., Wang H. and Chang K. C.:
“Supporting ranking and clustering as generalized
order-by and group-by”. In Proceedings of the ACM
SIGMOD International Conference on Management
of data, (2007), 127-138.
[19] Silva Y. N., Aref W. G. and Ali M. H.: “Similarity group-
by”. In Proceeding of 2009 IEEE 25th International
Conference on Data Engineering, (2009), 904-915.