
260 Maksoud et al.
Investigación Clínica 63(3): 2022
REFERENCES
1. World Health Organization (WHO). Breast
Cancer (December 2021). https://www.
who.int/news-room/fact-sheets/detail/
breast-cancer.
2. Peart O. Breast intervention and breast
cancer treatment options. Radiol Technol
2015;86:535M-558M; quiz 559–62.
3. Sergeev IN, Li S, Colby J, Ho C-T, Dus-
henkov S. Polymethoxylated flavones indu-
ce Ca2+-mediated apoptosis in breast can-
cer cells. Life Sci 2006;80:245–253.
4. Sareen D, Darjatmoko SR, Albert DM,
Polans AS. Mitochondria, calcium, and cal-
pain are key mediators of Resveratrol-indu-
ced apoptosis in breast cancer. Mol Phar-
macol 2007;72:1466–1475.
5. Lee J-H, Li Y-C, Ip S-W, Hsu S-C, Chang
N-W, Tang N-Y, Yu C-S, Chou S-T, Lin
S-S, Lino C-C, Yang J-S, Chung J-G. The
role of Ca2+ in baicalein-induced apopto-
sis in human breast MDA-MB-231 cancer
cells through mitochondria- and caspa-
se-3-dependent pathway. Anticancer Res
2008;28:1701–1711.
6. Pimentel AA, Felibertt P, Sojo F, Colman
L, Mayora A, Silva ML, Rojas H, Dipolo
R, Suarez AI, Compagnone RS, Arvelo F,
Galindo-Castro I, De Sanctis JB, Chiri-
no P, Benaim G. The marine sponge toxin
agelasine B increases the intracellular Ca2+
concentration and induces apoptosis in hu-
man breast cancer cells (MCF-7). Cancer
Chemother Pharmacol 2012;69:71–83.
7. Zhang Z, Teruya K, Eto H, Shirahata S.
Induction of apoptosis by low-molecular-
weight fucoidan through calcium- and
caspase-dependent mitochondrial pathways
in MDA-MB-231 breast cancer cells. Biosci
Biotechnol Biochem 2013;77:235–242.
8. Al-Taweel N, Varghese E, Florea A-M, Büs-
selberg D. Cisplatin (CDDP) triggers cell
death of MCF-7 cells following disruption of
intracellular calcium ([Ca2+]i) homeosta-
sis. J Toxicol Sci 2014;39:765–774.
9. Sehgal P, Szalai P, Olesen C, Praetorius
HA, Nissen P, Christensen SB, Engedal
N, Møller J V. Inhibition of the sarco/en-
doplasmic reticulum (ER) Ca2+-ATPase by
thapsigargin analogs induces cell death via
ER Ca2+ depletion and the unfolded protein
response. J Biol Chem 2017;292:19656–
19673.
10. Carafoli E. Calcium signaling: A tale for all
seasons. Proc Natl Acad Sci 2002;99:1115–
1122.
11. Carafoli E. Intracellular calcium homeos-
tasis. Annu Rev Biochem 1987;56:395–433.
12. Breckenridge DG, Germain M, Mathai JP,
Nguyen M, Shore GC. Regulation of apop-
tosis by endoplasmic reticulum pathways.
Oncogene 2003;22:8608–8618.
13. Szegezdi E, Logue SE, Gorman AM, Sa-
mali A. Mediators of endoplasmic reticu-
lum stress‐induced apoptosis. EMBO Rep
2006;7:880–885.
14. Rizzuto R, Bernardi P, Pozzan T. Mito-
chondria as all‐round players of the calcium
game. J Physiol 2000;529:37–47.
15. Hengartner MO. The biochemistry of apop-
tosis. Nature 2000;407:770–776.
16. Kouznetsov V V, Bello Forero JS, Amado
Torres DF. A simple entry to novel spiro
dihydroquinoline-oxindoles using Povarov
reaction between 3-N-aryliminoisatins and
isoeugenol. Tetrahedron Lett 2008; doi:
10.1016/j.tetlet.2008.07.096.
17. Kouznetsov V, R. Merchan Arenas D, Ar-
velo F, S. Bello Forero J, Sojo F, Munoz
A. 4-Hydroxy-3-methoxyphenyl substituted
3-methyl-tetrahydroquinoline derivatives
obtained through Imino Diels-Alder reac-
tions as potential antitumoral agents. Lett
Drug Des Discov 2010;7:632–639.
18. Mosmann T. Rapid colorimetric assay for
cellular growth and survival: Application to
proliferation and cytotoxicity assays. J Im-
munol Methods 1983;65:55–63.
19. Colina C, Flores A, Castillo C, Rosario Ga-
rrido M del, Israel A, DiPolo R, Benaim G.
Ceramide-1-P induces Ca2+ mobilization in
Jurkat T-cells by elevation of Ins(1,4,5)-P3
and activation of a store-operated calcium
channel. Biochem Biophys Res Commun
2005;336:54–60.
20. Grynkiewicz G, Poenie M, Tsien RY. A new
generation of Ca2+ indicators with greatly
improved fluorescence properties. J Biol
Chem 1985;260:3440–3450.
21. Eletr S, Inesi G. Phospholipid orientation
in sacroplasmic membranes: Spin-label ESR
and proton NMR studies. Biochim Biophys
Acta - Biomembr 1972;282:174–179.