Top(X) y Spec(τ ) como espacios primales

Palabras clave: Topologı́a primal, espectro primo, semianillo, topologı́a Alexandroff

Resumen

Una topología Alexandroff puede ser definida sobre un conjunto no vacío X, a través de una función \(f:X\to X\), decidiendo que los abiertos del espacio son los conjuntos \(A\subset X\) que contienen a su preimagen, es decir \(\tau_f:=\{A\subset X: f^{-1}(A)\subseteq A\}\). Esta topología es denominada topología primal, y al espacio \((X, \tau_f)\) se lo llama espacio primal. En este trabajo se explora una topología primal \(\tau_\psi\) inducida en \(Top(X)\), a través de la función \(\psi: Top(X)\to Top(X)\), definida como \(\psi(\tau)=\overline{\tau}\), con \(\overline{\tau}\) la clausura de \(\tau\) en \(2^X\) con la topología producto. Se prueba que el conjunto de todas las topologías Alexandroff en \(Top(X)\) es denso en \((Top(X),\tau_{\psi^*})\), con \(\tau_{\psi^*}\) la cotopología. Se prueba además que el conjunto \(\phi(\tau):=\{A\in \tau_\psi :\tau\notin A\}\) es un ideal maximal de \(\tau_\psi\) si y solo si \(\tau\) es Alexandroff. Finalmente se exploran las topologías primales en el espectro primo de un semianillo.

Citas

[1] Alexandroff, P. Diskrete Raume, Recueil Mathématique, 2(24) (1937), 501 - 5019.
[2] Barrı́a, S. Propiedades de las topologı́as vistas como semianillos, Tesis de Maestrı́a, Universidad de Concepción, 2016.
[3] Colasante, M., Uzcátegui, C., and Vielma, J. Low separation axioms via the diagonal, Applied General Topology, 9(1) (2008), 39 - 50.
[4] Croom, F. Principles of Topology, Dover Publications, 2016.
[5] Echi, O. The categories of flows of Set and Top, Topology and its Applications, 159(9) (2012), 2357 - 2366.
[6] Herman, G. On topology as applied to image analysis, Computer Vision, Graphics, and Image Processing, 52(3) (1990), 409-415.
[7] Johnstone, S. Stone Spaces, Cambridge University Press, 1982.
[8] McCord, M. Singular homology groups and homotopy groups of finite topological spaces, Duke Mathematical Journal, 33(3) (1966), 465-474.
[9] Munkres, J. Topology, Prentice Hall, 2000.
[10] Shirazi, F. and Golestani, N. Functional Alexandroff Spaces, Hacettepe Journal of Mathematics and Statistics, 40(4) (2011), 515 - 522.
[11] Subha, E. and Nagaveni, N. Strong separation axioms of T 1/2 -spaces, International Journal of Mathematical Analysis, 8(33) (2014), 1723-1732.
[12] Uzcátegui, C. and Vielma, J. Alexandroff topologies viewed as closed sets in the Cantor cube, Divulgaciones Matemáticas, 13(1) (2005), 45 - 53.
Publicado
2024-06-10
Cómo citar
Benavides, V., & Vielma, J. E. (2024). Top(X) y Spec(τ ) como espacios primales. Divulgaciones Matemáticas, 44-53. Recuperado a partir de https://produccioncientificaluz.org./index.php/divulgaciones/article/view/42237
Sección
Artículos de Investigación