Efecto del ensilado biológico de cabeza de Litopenaeus vannamei en la composición microbiana intestinal y la salud de gallinas ponedoras

  • Gloria Ochoa Mogollón Universidad Nacional de Tumbes. Grupo de investigación Biotecnología Sustentable en alimentación y salud animal en Medicina Veterinaria y Zootecnia. Facultad de Ciencias Agrarias. Corrales, Tumbes, Perú. https://orcid.org/0000-0003-4698-0078
  • Alberto Ordinola-Zapata Universidad Nacional de Tumbes. Facultad de Ingeniería Pesquera y Ciencias del Mar. Calle Los Ceibos S/N. Puerto Pizarro, Tumbes, Perú. https://orcid.org/0000-0002-9644-0531
  • Grazia Sanchez-Ochoa Universidad Nacional de Frontera. Facultad de Industrias Alimentarias, Escuela de Ingeniería en biotecnología. Calle Los Ceibos S/N. Sullana, Piura, Perú. https://orcid.org/0009-0002-8025-3501
  • Enedia Vieyra-Peña Universidad Nacional de Tumbes. Facultad de Ingeniería Pesquera y Ciencias del Mar. Calle Los Ceibos S/N. Puerto Pizarro, Tumbes, Perú. https://orcid.org/0000-0001-6541-7075
  • Gloria Palacios-Pinto Universidad Nacional Agraria la Molina. Facultad de Zootecnia. Av. La Molina. La Molina, Lima, Perú https://orcid.org/0000-0001-7856-5130
  • Héctor Sánchez-Suárez Universidad Nacional de Tumbes. Facultad de Ciencias Agrarias. Corrales, Tumbes, Perú. https://orcid.org/0000-0003-2395-5056
Palabras clave: Ensilaje biológico, flora bacteriana, alimentación de gallinas, metagenómica, salud intestinal, Litopenaeus vannamei

Resumen

El objetivo de este estudio fue analizar la composición microbiana asociada con la salud intestinal de gallinas ponedoras, suplementadas con ensilaje biológico. Durante un período de 4 semanas, se alimentó a gallinas de 30 semanas de edad con una dieta base que contenía 16% de proteína (T0), en comparación con otra dieta suplementada con un 18% de ensilado biológico de cabeza de langostino Litopenaeus vannamei (BS), con un contenido proteico de 16,76% (T3E). Las muestras para el análisis metagenómico se obtuvieron del contenido del yeyuno de las aves utilizando el kit E.Z.N.A.® Soil DNA (Omega Bio-Tek Inc., USA). Se observó un aumento significativo de bacterias benéficas de las clases Bacteroidia y Bacilli; de las familias Bacteroidaceae y Lactobacillaceae y de los géneros Bacteroides y Lactobacillus, Se observó también una disminución de bacterias perjudiciales de la clase Erysipelotrichia, de la familia Helicobacteraceae y del género Holdemania, muchas de las cuales  juegan  un  papel  clave en la salud intestinal. El uso de la dieta con BS promovió un incremento de microorganismos beneficiosos y una reducción de aquellos perjudiciales, lo que sugiere una modificación favorable en la composición de la flora bacteriana, vinculada a la mejora de la salud intestinal por lo que el BS puede ser considerado un suplemento funcional.

Descargas

La descarga de datos todavía no está disponible.

Citas

Oladele P, Ngo J, Chang T, Johnson TA. Temporal dynamics of fecal microbiota community succession in broiler chickens, calves, and piglets under aerobic exposure. Microbiol. Spectr. [Internet]. 2024; 12(6):e04084-23. doi: https://doi.org/n8m5 DOI: https://doi.org/10.1128/spectrum.04084-23

Arreguin-Nava MA, Graham BD, Adhdekari B, Agnello M, Selby CM, Hernandez-Velasco X, Vuong CN, Solis-Cruz B, Hernandez-Patlan D, Latorre JD, Tellez G, Hargis BM, Tellez-Isaias. In ovo Administration of Defined Lactic Acid Bacteria Previously Isolated From Adult Hens Induced Variations in the Cecae Microbiota Structure and Enteroba- cteriaceae Colonization on a Virulent Escherichia coli Horizontal Infection Model in Broiler Chickens. Front. Vet. Sci. [Internet]. 2020; 7:489. doi: https://doi.org/n8m7 DOI: https://doi.org/10.3389/fvets.2020.00489

Gaviria YS, Figueroa OA, Zapata JE. Efecto de la inclusión de ensilado químico de vísceras de tilapia roja (Oreochromis spp.) en dietas para pollos de engorde sobre los parámetros productivos y sanguíneos. Inf. Tecnol. [Internet]. 2021; 32(3):79-88. doi: https://doi.org/n8m8 DOI: https://doi.org/10.4067/S0718-07642021000300079

Guimarães CC, Maciel IV, Silva AF, Lopes AF, Ramón Carpio KC, Inhamuns da Silva AJ. Aspectos biotecnológicos da silagem biológica de resíduos do Tambaqui. Revista de Agronegocios y Medio Ambiente. [Internet]. 2021; 14(1):205-215. doi: https://doi.org/n8m9 DOI: https://doi.org/10.17765/2176-9168.2021v14n1e006861

Mogollón CR, Mogollón GO, Aguilera RA, Ortiz JQ, Suárez HS. Production and evaluation of probiotic milk inocula obtained from the digestive tract of piglets (Sus scrofa domesticus) proposed for pig feed. Rev. Mex. Ciencias Pecu. [Internet]. 2021; 12(1):120–137. doi: https://doi. org/n8nb DOI: https://doi.org/10.22319/rmcp.v12i1.5445

Lopes JL, Gomes FA, Barreto LB, Rosa BL, De Souza LP, Ferreira JB, De Freitas HJ. Silagem ácida e biológica de resíduos de peixes produzidos na Amazônia ocidental – Acre. Braz. J. Dev. [Internet]. 2020; 6(6):36677–36693. doi: https://doi.org/n8nc DOI: https://doi.org/10.34117/bjdv6n6-271

Safari R, Yaghoub-Zadeh Z, Bankeh-Saz Z, Reyhani-Poul S, Jafari A, Abbaszadeh MM. Evaluation of quality and chemical spoilage indicators of biological silage produced from chicken waste and its comparison with meat powder, blood powderand kilka fishpowder. J. Food Sci. Technol. [Internet]. 2022; 18(121):203–213. doi: https://doi. org/n8ng DOI: https://doi.org/10.52547/fsct.18.121.16

Bunte S, Grone R, Keller B, Keller C, Galvez E, Strowig T, Kamphues J, Hankel, J. Intestinal Microbiota of Fattening Pigs Offered Non-Fermented and Fermented Liquid Feed with and without the Supplementation of Non-Fermented Coarse Cereals. Microorganisms [Internet]. 2020; 8(5):638. doi: https://doi.org/n8nj DOI: https://doi.org/10.3390/microorganisms8050638

Abbas S, Riaz A, Nawaz SK, Arshad N. Probiotic potential of locally isolated strain lactobacillus brevis mf179529 and its comparison with commercial probiotics in chicken model. Pakistan J. Agric. Sci. [Internet]. 2021 [cited August 12, 2024]; 58(1):135–141. Available in: https://goo.su/U0nnu

Castillo WEG, Sánchez HAS, Ochoa GMM. Evaluación del ensilado de residuos de pescado y de cabeza de langostino fermentado con Lactobacillus fermentus aislado de cerdo. Rev. Investig. Vet. Peru. [Internet]. 2019[cited 18 Agosto, 2024]; 30(4):1456–1469. doi: Available in: https://goo.su/yvrnGP6 DOI: https://doi.org/10.15381/rivep.v30i4.17165

Plaza JL, Bolívar G, Ramírez C. Effect of drying process in silage from fish waste with L. Plantarum in physicochemical and microbiological characteristics of the product. Vitae. [Internet]. 2016[cited 2023 May 11]; 23(1):S299–S303. Available in: https://goo.su/hHbUf

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. [Internet]. 2009; 75(23):7537-7541. doi: https://doi.org/fqcv8t DOI: https://doi.org/10.1128/AEM.01541-09

Dobrowolski P, Tomaszewska E, Klebaniuk R, Tomczyk- Warunek A, Szymańczyk S, Donaldson J, Świetlicka I, Mielnik-Błaszczak M, Kuc D, Muszyński S. Structural changes in the small intestine of female turkeys receiving a probiotic preparation are dose and region dependent. Animal. [Internet]. 2019; 13(12):2773-2781. doi: https://doi.org/n8pg DOI: https://doi.org/10.1017/S1751731119001149

Ostadzadeh M, Habibi Najafi MB, Ehsani MR. Lactic acid bacteria isolated from traditional Iranian butter with probiotic and cholesterol-lowering properties: In vitro and in situ activity. Food Sci. Nutr. [Internet]. 2022; 11(1):350-363. doi: https://doi.org/n8ph DOI: https://doi.org/10.1002/fsn3.3066

Fernández-Herrero AL, Tabera A, Agüeria D, Sanzano P, Grosman F, Manca E. Obtención, caracterización microbiológica y físico-química de ensilado biológico de carpa (Cyprinus carpio). REDVET. [Internet]. 2011[Cited Noviembre 5 2024]; 12(8):1-15. Available in: https://goo.su/OSyUA

Garavito Godriguez NJ. Norma Técnica NTC Colombiana 805.- Academia.edu [Internet]. 2017[cited July 17, 2024]. Available in: https://n9.cl/pz7q5x

Costa MNF, Furtado YIC, Monteiro CC, Brasiliense ARP, Yoshioka ETO. Physiological responses of tambaqui (Colossoma macropomum) fed diets supplemented with silage from fish and vegetables residues. Braz. J. Biol. 2024; 84:e255493. doi: https://doi.org/n8pk DOI: https://doi.org/10.1590/1519-6984.255493

Qiao J, Shang Z, Liu X, Wang K, Wu Z, Wei Q, Li H. Regulatory Effects of Combined Dietary Supplementation With Essential Oils and Organic Acids on Microbial Communities of Cobb Broilers. Front. Microbiol. [Internet]. 2022; 12:814626. doi: https://doi.org/n8pm DOI: https://doi.org/10.3389/fmicb.2021.814626

Lutfullina G, Pudova D, Gogoleva N, Shagimardanova E, Mardanova A. Effect of the total fraction of Bacillus subtilis GM5 lipopeptides on the growth parameters and formation of the bacterial microbiota of broiler chickens. E3S Web Conf. [Internet]. 2020; 222:02053. doi: https://doi.org/n8pn DOI: https://doi.org/10.1051/e3sconf/202022202053

Giraffa G, Chanishvili N, Widyastuti Y. Importance of lactobacilli in food and feed biotechnology. Res. Microbiol. [Internet]. 2010; 161(6):480-487: doi: https://doi.org/bptn43 DOI: https://doi.org/10.1016/j.resmic.2010.03.001

Teng D, Jia W, Wang W, Liao L, Xu B, Gong L, Dong H, Zhong L, Yang J. Causality of the gut microbiome and Randomization study. BMC Cardiovasc. Disord. [Internet]. 2024; 24:138. doi: https://doi.org/n8pp DOI: https://doi.org/10.1186/s12872-024-03804-3

Rychlik I. Composition and Function of Chicken Gut Microbiota. Animals. [Internet]. 2020; 10(1):103. doi: https://doi.org/n8pq DOI: https://doi.org/10.3390/ani10010103

Figueiredo G, Gomes, M, Covas C. Mendo S, Caetano T. The Unexplored Wealth of Microbial Secondary Metabolites: the Sphingobacteriaceae Case Study. Microb. Ecol. [Internet]. 2022; 83:470–481. doi: https://doi.org/gj2ttm DOI: https://doi.org/10.1007/s00248-021-01762-3

Cho S, Kumar SS, Ramirez S, Valientes R, Kim IH. Dietary eubiotics of microbial muramidase and glycan improve intestinal villi, ileum microbiota composition and production trait of broiler. J. Anim. Sci. Biotechnol. [Internet]. 2024; 15:59. doi: https://doi.org/n8ps DOI: https://doi.org/10.1186/s40104-024-01010-x

Xiang-Yu W, Jin-Xin M, Wei Xin R, He M, Liu G, Liu R, Hong Li G, Zhao Q Xiao-Xuan Z, Hong-Bo N. Amplicon-based metagenomic association analysis of gut microbiota in relation to egg-laying period and breeds of hens. BMC Microbiol. [Internet]. 2023; 23:138. doi: https://doi.org/n8pt DOI: https://doi.org/10.1186/s12866-023-02857-2

Altaher YW, Jahromi MF, Ebrahim R, Zulkifli I, Liang JB. Lactobacillus pentosus Ita23 and L. Acidipiscis Ita44 enhance feed conversion efficiency and beneficial gut microbiota in broiler chickens. Braz. J. Poult. Sci. [Internet]. 2015; 17(2):159-164. doi: https://doi.org/n8pv DOI: https://doi.org/10.1590/1516-635x1702159-164

Acharya KD, Parakoyi AER, Tetel MJ. Endocrine Disruptionand the Gut Microbiome. Endocr. Disrupt. Hum. Heal. [Internet]. 2022;355-376. doi: https://doi.org/n8pw DOI: https://doi.org/10.1016/B978-0-12-821985-0.00015-3

Duseja A, De A, Wong V. Special Population: Lean Nonalcoholic Fatty Liver Disease. Clin. Liver. Dis. [Internet]. 2023; 27(2):451-469. doi: https://doi.org/n8px DOI: https://doi.org/10.1016/j.cld.2023.01.011

Lin Y, Zhao W, Shi ZD, Gu HR, Zhang XT, Ji X, Zou XT, Gong JS, Yao W. Accumulation of antibiotics and heavy metals in meat duck deep litter and their role in persistence of antibiotic-resistant Escherichia coli in different flocks on one duck farm. Poult. Sci. [Internet]. 2017; 96(4):9971006. doi: https://doi.org/n8pz DOI: https://doi.org/10.3382/ps/pew368

Navale VD, Yadav R, Khilari A, Dharne M, Shanmugam D, Vamkudoth KR. Dietary Supplementation of Lactococcus lactis subsp. lactis BIONCL17752 on Growth Performance, and Gut Microbiota of Broiler Chickens. Probiotics Antimicrob. Proteins [Internet]. 2024. 2024:1-14. doi: https://doi.org/n8p2 DOI: https://doi.org/10.1007/s12602-024-10313-4

Shabbir U, Rubab M, Daliri EBM, Chelliah R, Javed A, Oh DH. Curcumin, Quercetin, Catechins and Metabolic Diseases: The Role of Gut Microbiota. Nutr. [Internet]. 2021; 13(1):206. doi: https://doi.org/gpt7vd DOI: https://doi.org/10.3390/nu13010206

Soo RM, Woodcroft BJ, Parks DH, Tyson GW, Hugenholtz P. Back fromthe dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus. PeerJ. [Internet]. 2015; 3:e968. doi: https://doi.org/gfkmww DOI: https://doi.org/10.7717/peerj.968

Quaglia NC, Capuozzo F, Ioanna F, De Rosa M, Dambrosio A. Occurrence of Helicobacter pullorum in Retail Chicken Meat: A One-Health Approach to Consumer Health Protection. Foods. [Internet]. 2024; 13(6):845. doi: https://doi.org/n8p5 DOI: https://doi.org/10.3390/foods13060845

Prieto I, Hidalgo M, Segarra AB, Martínez-Rodríguez AM, Cobo A, Ramírez M, Abriouel H, Gálvez A, Martínez-Cañamero M. Influence of a diet enriched with virgin olive oil or butter on mouse gut microbiota and its correlation to physiological and biochemical parameters related to metabolic syndrome. PLoS One [Internet]. 2018; 13(1):e0190368. doi: https://doi.org/n8p6 DOI: https://doi.org/10.1371/journal.pone.0190368

Jia B, Lin H, Yu S, Liu N, Yu D, Wu A. Mycotoxin deoxynivalenol-induced intestinal flora disorders, dysfunction and organ damage in broilers and pigs. J. Hazard. Mater. [Internet]. 2023; 451:131172. doi: https://doi.org/gwdjbj DOI: https://doi.org/10.1016/j.jhazmat.2023.131172

Kyoung H, Kim E, Cho JH, Lee H, Kim Y, Park KI , Song M. Dietary yeast cell wall enhanced intestinal health of broiler chickens by modulating intestinal integrity, immune responses, and microbiota. Poult. Sci. [Internet]. 2023; 102(6):102660. doi: https://doi.org/n8p8 DOI: https://doi.org/10.1016/j.psj.2023.102660

Molnár A, Such N, Farkas V, Pál L, Menyhárt L, Wágner L, Husvéth, F.; Dublecz, K. Effects of wheat bran and clostridium butyricum supplementation on cecal microbiota, short-chain fatty acid concentration, ph and histomorphometry in broiler chickens. Animals. [Internet]. 2020; 10(12):2230. doi: https://doi.org/n8p9 DOI: https://doi.org/10.3390/ani10122230

Jia X, Hu P, Wang P, Ding Q, Wang E, Xie Z, Tu Z, Zhang L. Digestive Stability of Tannin-Enriched Fraction of Rubus chingii Hu Fruits and Its Regulatory Effect on the Intestinal Microflora. Food Sci. [Internet]. 2023; 44(9):104-113. doi: https://doi.org/n8qb

Kim JY, Whon TW, Lim MY, Kim YB, Kim N, Kwon MS, Kim J, Lee SH, Choi HJ, Nam IH, Chung WH, Kim JH, Bae JW, Roh SW, Nam Y. Do.The human gut archaeome: Identification of diverse haloarchaea in Korean subjects. Microbiome. [Internet]. 2020; 8:114. doi: https://doi.org/n8qc DOI: https://doi.org/10.1186/s40168-020-00894-x

Wang B, Du P, Huang S, He D, Chen J, Wen X, Yang J, XianS, Cheng Z. Comparison of the caecal microbial community structure and physiological indicators of healthy and infection Eimeria tenella chickens during peak of oocyst shedding. Avian Pathol. [Internet]. 2023; 52(1):51–61. doi: https://doi.org/n8qd DOI: https://doi.org/10.1080/03079457.2022.2133681

Mukai T, Arihara K, Ikeda A, Nomura K, Suzuki F, Ohori H. Lactobacillus kitasatonis sp. nov., from chicken intestine. Int. J. Syst. Evol. Microbiol. [Internet]. 2003; 53(6):20552059. doi: https://doi.org/dncmwm DOI: https://doi.org/10.1099/ijs.0.02815-0

Jha R, Das R, Oak S, Mishra P. Probiotics (Direct-fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. Animals. [Internet]. 2020; 10(10):1863. doi: https://doi.org/gk9pmc DOI: https://doi.org/10.3390/ani10101863

Little AS, Younker IT, Schechter MS, Bernardino PN, Méheust R, Stemczynski J, Scorza K, Mullowney MW, Sharan D, Waligurski E, Smith R, Ramanswamy R, Leiter W, Moran D, McMillin M, Odenwald MA, Iavarone AT, Sidebottom AM, Sundararajan A, Pamer EG, Eren AM, Light SH. Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration. Nat. Microbiol. [Internet]. 2024; 9(1):55-69. doi: https://doi.org/gtb925 DOI: https://doi.org/10.1038/s41564-023-01560-2

Nieto JA, Rosés C, Viadel B, Gallego E, Romo-Hualde A, Milagro FI, Barceló A, Virto R, Saldaña G, Luengo E.

Sourdough bread enriched with exopolysaccharides and gazpacho by-products modulates in vitro the microbiota dysbiosis. Int. J. Biol. Macromol. [Internet]. 2024; 272(Part 1):132906. doi: https://doi.org/n8qm DOI: https://doi.org/10.1016/j.ijbiomac.2024.132906

Khan S, Chousalkar KK. Salmonella Typhimurium infection disrupts but continuous feeding of Bacillus based probiotic restores gut microbiota in infected hens. J. Anim. Sci. Biotechnol. [Internet]. 2020; 11:29. doi: https://doi.org/gmz8ds DOI: https://doi.org/10.1186/s40104-020-0433-7

Kollarcikova M, Faldynova M, Matiasovicova J, Jahodarova E, Kubasova T, Seidlerova Z, Babak V, Videnska P, Cizek A, Rychlik I. Different Bacteroides Species Colonise Human and Chicken Intestinal Tract. Microorg. [Internet]. 2020; 8(10):1483. doi: https://doi.org/n8qn DOI: https://doi.org/10.3390/microorganisms8101483

Wei X, Wang YL, Wen BT, Liu SJ, Wang L, Sun L,Gu TY, Li Z, Bao Y, Fan SL, Zhou H, Wang F, Xin F. The a-Helical Cap Domain of a Novel Esterase from Gut Alistipes shahii Shaping the Substrate-Binding Pocket. J. Agric. Food Chem. [Internet]. 2021; 69(21):6064-6072. doi: https://doi.org/gjz6z2 DOI: https://doi.org/10.1021/acs.jafc.1c00940

Wen Yuan Y, Pei En C, Sin Jin L, Shih Torng D, Yuan Yu L. Exploring Bile-Acid Changes and Microflora Profiles in Chicken Fatty Liver Disease Model. Animals. [Internet]. 2024; 14(7):992. doi: https://doi.org/n8qp DOI: https://doi.org/10.3390/ani14070992

Li, Z., Wang, W., Liu, D, Guo Y. Effects of Lactobacillus acidophilus on the growth performance and intestinal health of broilers challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. [Internet]. 2018; 9:25. doi: https://doi.org/n8qq DOI: https://doi.org/10.1186/s40104-018-0243-3

Lokapirnasari WP, Pribadi TB, Arif A Al, Soeharsono S, Hidanah S, Harijani N, Najwan R, Huda K, Wardhani HCP, Rahman NFN, Yulianto AB. Potency of probiotics Bifidobacterium spp. And Lactobacillus casei to improve growth performance and business analysis in organic laying hens. Vet. World. [Internet]. 2019; 12(6):860-867. doi: https://doi.org/n8qr DOI: https://doi.org/10.14202/vetworld.2019.860-867

Wang H, Ni X, Qing X, Zeng D, Luo M, Liu L, Li G, Pan K, Jing B. Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers. Front. Microbiol. [Internet]. 2017; 8:1073. doi: https://doi.org/gsdnjn DOI: https://doi.org/10.3389/fmicb.2017.01073

Ziyaei K, Hosseini SV. The review of hydrolyzed protein from fishery by-product: Production methods, application and Biological Properties. J. Food Sci. Technol. [Internet]. 2021; 18(111):383-395. doi: https://doi.org/n8qs DOI: https://doi.org/10.52547/fsct.18.111.383

Publicado
2025-03-12
Cómo citar
1.
Ochoa Mogollón G, Ordinola-Zapata A, Sanchez-Ochoa G, Vieyra-Peña E, Palacios-Pinto G, Sánchez-Suárez H. Efecto del ensilado biológico de cabeza de Litopenaeus vannamei en la composición microbiana intestinal y la salud de gallinas ponedoras. Rev. Cient. FCV-LUZ [Internet]. 12 de marzo de 2025 [citado 4 de abril de 2025];35(1):7. Disponible en: https://produccioncientificaluz.org./index.php/cientifica/article/view/43631
Sección
Producción Animal