El efecto de la intoxicación aguda por Monóxido de Carbono en la necrosis cardíaca en ratas: en relación con los niveles de Adiponectina

Palabras clave: Adiponectina, ntoxicación por monóxido de carbono, corazón, terapia de oxígeno, rata

Resumen

Con el objetivo de investigar los efectos de la intoxicación aguda por monóxido de carbono (CO) y la terapia de oxígeno subsiguiente en la necrosis cardíaca en ratas, con un enfoque específico en los niveles de adiponectina, veintiuna ratas albinas Wistar machos fueron divididas en tres grupos (Control, CO, CO+O2). El grupo de control fue colocado en un recipiente y expuesto al aire ambiente durante 30 min. Se indujo intoxicación aguda por CO en el grupo CO y el grupo CO+O2 al exponer a los ratas a gas CO durante 30 min. Después de la exposición al CO, el grupo CO+O2 recibió terapia de oxígeno durante 30 min, mientras que el grupo CO no recibió ninguna intervención adicional. La eutanasia de los animales se realizó mediante punción cardíaca bajo anestesia, siguiendo los procedimientos éticos aprobados. Se midieron los niveles de carboxihemoglobina (COHb), creatina quinasa (CK), banda de creatina quinasa miocárdica (CK–MB), proteína C–reactiva (CRP) y lactato deshidrogenasa (LDH), así como los niveles de adiponectina cardíaca y sérica. La intoxicación por CO causó necrosis en el tejido cardíaco; sin embargo, la terapia de oxígeno alivió el efecto negativo del CO en la lesión cardíaca. Los niveles de COHb y LDH en el grupo de CO aumentaron, mientras que tanto los niveles de adiponectina cardíaca como sérica disminuyeron (todos, P<0.05). No se observaron cambios en los niveles de CK, CK–MB y CRP entre los grupos (todos, P>0,05). La terapia de oxígeno disminuyó los niveles de COHb, pero aumentó tanto los niveles de adiponectina cardíaca como sérica (todos, P<0.05). La adiponectina y LDH pueden servir como biomarcadores potenciales para el diagnóstico temprano de la necrosis cardíaca causada por la intoxicación aguda por CO. La valoración o cuantificación de adiponectina también puede ser útil para el pronóstico temprano de la necrosis cardíaca después de la terapia de oxígeno.

Descargas

La descarga de datos todavía no está disponible.

Citas

Yuan Z, De La Cruz LK, Yang X, Wang B. Carbon monoxide signaling: examining ıts engagement with various molecular targets in the context of binding affinity, concentration, and biologic response. Pharmacol Rev. [Internet]. 2022; 74(3):825-875 . doi: https://doi.org/n7rs DOI: https://doi.org/10.1124/pharmrev.121.000564

Adach W, Błaszczyk M, Olas B. Carbon monoxide and its donors – Chemical and biological properties. Chem. Biol. Interact. [Internet]. 2020; 318:108973. doi: https://doi.org/gpkqrb DOI: https://doi.org/10.1016/j.cbi.2020.108973

Sobhakumari A, Poppenga RH, Pesavento JB, Uzal FA. Pathology of carbon monoxide poisoning in two cats. BMC Vet. Res. [Internet]. 2018; 14:67. doi: https://doi.org/n7rz DOI: https://doi.org/10.1186/s12917-018-1385-4

Ito H, Ogawa R, Shimojo N. Rhabdomyolysis secondary to carbon monoxide poisoning: A retrospective cohort study. Am. J. Emerg. Med. [Internet]. 2022; 60:207-208. doi: https://doi.org/n7r4 DOI: https://doi.org/10.1016/j.ajem.2022.06.051

Geng S, Hao X, Xu H, Yao J, He D, Xin H, Gong X, Zhang R.Cardiac injury after acute carbon monoxide poisoning and its clinical treatment scheme. Exp. Ther. Med. [Internet]. 2020; 20(2):1098-1104. doi: https://doi.org/n7r5 DOI: https://doi.org/10.3892/etm.2020.8801

Koga H, Tashiro H, Mukasa K, Inoue T, Okamoto A, Urabe S, Sagara S, Yano K, Onitsuka K, Yamashita H. Can indicators of myocardial damage predict carbon monoxide poisoning outcomes? BMC Emerg. Med. [Internet]. 2021; 21(1):7. doi: https://doi.org/n7r6 DOI: https://doi.org/10.1186/s12873-021-00405-7

Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell. Biol. Toxicol. [Internet]. 2023; 39(1):111-143. doi: https://doi.org/g7xrvd DOI: https://doi.org/10.1007/s10565-022-09773-7

Maghamiour N, Safaie N. High creatine kinase (CK)–MB and lactate dehydrogenase in the absence of myocardial injury or infarction: A case report. J. Cardiovasc. Thorac. Res. [Internet]. 2014; 6:69-70. doi: https://doi.org/n7r7

Bojinca M, Bojinca VC, Balanescu AR, Balanescu SM. Macro creatine kinase (macro CK) in clinical practice. Rev. Chim. [Internet]. 2018; 69(8):2107-2109. doi: https://doi.org/n7r8 DOI: https://doi.org/10.37358/RC.18.8.6483

Farhana A, Lappin SL. Biochemistry, Lactate Dehydrogenase. [Internet]. Treasure Island (FL, USA): StatPearls Publishing; 2024 [cited 05 May 2024]. Available in: https://goo.su/hoybTL

Peng J, Chen Q, Wu C. The role of adiponectin in cardiovascular disease. Cardiovasc. Pathol. [Internet]. 2023; 64:107514. doi: https://doi.org/g7v978 DOI: https://doi.org/10.1016/j.carpath.2022.107514

Karastergiou K, Evans I, Ogston N, Miheisi N, Nair D, Kaski JC, Jahangiri M, Mohamed–Ali V. Epicardial adipokines in obesity and coronary artery disease induce atherogenic changes in monocytes and endothelial cells. Arterioscl. Throm. Vas. [Internet]. 2010; 30(7):1340-1346. doi: https://doi.org/dsrtzh DOI: https://doi.org/10.1161/ATVBAHA.110.204719

Guo J, Zhu K, Li Z, Xiao C. Adiponectin protects hypoxia/Reoxygenation–induced cardiomyocyte injury by suppressing autophagy. J. Immunol. Res. [Internet]. 2022; 2022:e8433464. doi: https://doi.org/n7r9 DOI: https://doi.org/10.1155/2022/8433464

Khan RS, Kato TS, Chokshi A, Chew M, Yu S, Wu C, Singh P, Cheema FH, Takayama H, Harris C, Reyes–Soffer G, Knöll R, Milting H, Naka Y, Mancini D, Schulze PC. Adipose tissue inflammation and adiponectin resistance in patients with advanced heart failure: correction after ventricular assist device implantation. Circ. Heart Fail. [Internet]. 2012; 5(3):340-348. doi: https://doi.org/f3vc3m DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.111.964031

Gandini C, Castoldi AF, Candura SM, Priori S, Locatelli C, Butera R, Bellet C, Manzo L. Cardiac damage in pediatric carbon monoxide poisoning. J. Toxicol. Clin. Toxicol. [Internet]. 2001; 39(1):45-51. doi: https://doi.org/dmxrmp DOI: https://doi.org/10.1081/CLT-100102879

Gokdemir GS, Seker U, Demirtas B, Taskin S. Effects of acute carbon monoxide poisoning on liver damage and comparisons of related oxygen therapies in a rat model. Toxicol. Mech. Method. [Internet]. 2024; 34(8):845-854. doi: https://doi.org/n7sb DOI: https://doi.org/10.1080/15376516.2024.2353887

Brvar M, Mozina M, Osredkar J, Suput D, Bunc M. Prognostic value of S100B protein in carbon monoxide–poisoned rats. Crit. Care Med. [Internet]. 2004; 32(10):2128-2130. doi: https://doi.org/bb66km DOI: https://doi.org/10.1097/01.CCM.0000142702.39718.A0

Bishop ML, Fody, EP, Schoeff LE. Clinical Chemistry: principles, techniques, and correlations. 5th ed. Baltimore (MD, USA): Lippincott Williams & Wilkins; 2005. 756 p.

Ortiz–Avila O, García–Berumen CI, Figueroa–García MdC, Mejía–Zepeda R, Saavedra–Molina A, Meléndez–Herrera E, Cortés–Rojo C. Avocado oil delays kidney ınjury by ımproving serum adiponectin levels and renal mitochondrial dysfunction in type 2 diabetic rats. J. Biol. Regul. Homeost. Agents. [Internet]. 2024; 38(3):1975–1985. doi: https://doi.org/n7sc DOI: https://doi.org/10.23812/j.biol.regul.homeost.agents.20243803.154

Tabrizian K, Shahriari Z, Rezaee R, Jahantigh H, Bagheri G, Tsarouhas K, Docea AO, Tsatsakis A, Hashemzaei M. Cardioprotective effects of insulin on carbon monoxide–induced toxicity in male rats. Hum. Exp. Toxicol. [Internet]. 2019; 38(1):148-154. doi: https://doi.org/n7sd DOI: https://doi.org/10.1177/0960327118788134

Singh P. P value, statistical significance and clinical significance. J Clin Prev Cardiol. [Internet]. 2013[cited August 15 2024]; 2(4):202-204. Available in: https://goo.su/YrYoB0

Orhan Ö, Yeşil A. Carbon monoxide poisoning: comparison of paediatrics and adult patients. Eurasian J. Tox. [Internet]. 2023; 5(2):28-31 doi: https://doi.org/n7sf DOI: https://doi.org/10.51262/ejtox.1313935

Veiraiah A. Carbon monoxide poisoning. Medicine [Internet]. 2020; 48(3):197-198. doi: https://doi.org/n7sg DOI: https://doi.org/10.1016/j.mpmed.2019.12.013

Lee KK, Spath N, Miller MR, Mills NL, Shah ASV. Short–term exposure to carbon monoxide and myocardial infarction: A systematic review and meta–analysis. Environ. Int. [Internet]. 2020; 143:105901. doi: https://doi.org/gwbtrn DOI: https://doi.org/10.1016/j.envint.2020.105901

Dent MR, Rose JJ, Tejero J, Gladwin MT. Carbon monoxide poisoning: from microbes to therapeutics. Annu. Rev. Med. [Internet]. 2024; 75:337-351. doi: https://doi.org/n7sh DOI: https://doi.org/10.1146/annurev-med-052422-020045

Haliga RE, Morărașu BC, Șorodoc V, Lionte C, Sîrbu O, Stoica A, Ceasovschih A, Constantin M, Șorodoc L. Rare causes of acute coronary syndrome: carbon monoxide poisoning. Life [Internet]. 2022; 12(8):1158. doi: https://doi.org/n7sj DOI: https://doi.org/10.3390/life12081158

Savioli G, Gri N, Ceresa IF, Piccioni A, Zanza C, Longhitano Y, Ricevuti G, Daccò M, Esposito C, Candura SM. Carbon monoxide poisoning: from occupational health to emergency medicine. J. Clin. Med. [Internet]. 2024; 13(9):2466. doi: https://doi.org/g8wmpj DOI: https://doi.org/10.3390/jcm13092466

Abo El–Noor M, Elgazzar FM, El–Shafy G, Shouip OM. Serum acute phase proteins as novel markers of myocardial ınjury in acute carbon monoxide poisoned patients. Mansoura J. Forensic Med. Clin. Toxicol. [Internet]. 2016; 24(2):17-33. doi: https://doi.org/n7sk DOI: https://doi.org/10.21608/mjfmct.2016.47802

İpek S, Güllü UU, Güngör Ş, Demiray Ş. The effect of full blood count and cardiac biomarkers on prognosis in carbon monoxide poisoning in children. Ir. J. Med. Sci. [Internet]. 2023; 192(5):2457-2466. doi: https://doi.org/n7sm DOI: https://doi.org/10.1007/s11845-022-03232-2

Lewandrowski K, Chen A, Januzzi J. Cardiac markers for myocardial infarction. A brief review. Am. J. Clin. Pathol. [Internet]. 2002; 118(Suppl 1): 93-99. doi: https://doi.org/bwzqbr DOI: https://doi.org/10.1309/3EK7-YVV9-228C-E1XT

Akcali G, Uzun G, Arziman I, Aydin I, Yildiz S. The relationship between intoxication severity and blood interleukin 6, interleukin 10 and CRP levels in carbon monoxide–poisoned patients. Undersea Hyperb. Med. 2018; 45(6):646–652. PMID: 31158931. DOI: https://doi.org/10.22462/11.12.2018.4

Kim YO, Kim HI, Jung BK. Pattern of change of C–reactive protein levels and its clinical implication in patients with acute poisoning. SAGE Open Med. [Internet]. 2022; 10:2022. doi: https://doi.org/g6dzt3 DOI: https://doi.org/10.1177/20503121211073227

Hernández Bello CY, Figueroa–UribeAF, Hernández–Ramírez J. Biochemical suffocants: Carbon monoxide and Cyanide. Rev. Fac. Med. Hum. [Internet]. 2022; 22(3):614-624. doi: https://doi.org/n7sn DOI: https://doi.org/10.25176/RFMH.v22i3.4928

Agoro ES, Chinyere GC, Akubugwo EI, Wankasi MM, Agi VN. Some vitreous humour cardiorenal biochemical parameters as an indicator of acute carbon monoxide poisoning death: an animal model. Australian. J. Forens. Sci. [Internet]. 2019; 51(4):476-484. doi: https://doi.org/n7sp DOI: https://doi.org/10.1080/00450618.2018.1429015

Khalaf M, El–Desouky N, El–Galad G, Abbas AH. Acute carbon monoxide–induced cardiotoxicity: clinical study. Int. J. Med. Toxicol. Leg. Med. [Internet]. 2011 [cited 18 September 2024]; 14:28-36. Available in: https://goo.su/lqsrtq

Feijóo–Bandín S, Aragón–Herrera A, Moraña–Fernández S, Anido–Varela L, Tarazón E, Roselló–Lletí E, Portolés M, Moscoso I, Gualillo O, González–Juanatey JR, Lago F. Adipokines and inflammation: focus on cardiovascular diseases. Int. J. Mol. Sci. [Internet]. 2020; 21(20):7711. doi: https://doi.org/gpxqsf DOI: https://doi.org/10.3390/ijms21207711

Nielsen MB, Çolak Y, Benn M, Mason A, Burgess S, Nordestgaard BG. Plasma adiponectin levels and risk of heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarction: large–scale observational and Mendelian randomization evidence. Cardiovasc. Res. [Internet]. 2024; 120(1):95-107. doi: https://doi.org/g8v9sg DOI: https://doi.org/10.1093/cvr/cvad162

Fu L, Du J, Furkert D, Shipton ML, Liu X, Aguirre T, Chin AC, Riley AM, Potter BVL, Fiedler D, Zhang X, Zhu Y, Fu C. Depleting inositol pyrophosphate 5-InsP7 protected the heart against ischaemia–reperfusion injury by elevating plasma adiponectin. Cardiovasc. Res. [Internet]. 2024; 120(8):954-970. doi: https://doi.org/n7sq DOI: https://doi.org/10.1093/cvr/cvae017

Varma D, Mulay S,Chemtob S. Carbonmonoxide: from public health risk to painless killer. In: Gupta RC, editor. Handbook of toxicology of chemical warfare agents [Internet]. Amsterdam (Netherlands): Academic Press; 2009. p. 271-292. doi: https://doi.org/fhxbf8 DOI: https://doi.org/10.1016/B978-0-12-374484-5.00020-1

Ashbaugh EA, Mazzaferro EM, McKiernan BC, Drobatz KJ. The association of physical examination abnormalities and carboxyhemoglobin concentrations in 21 dogs trapped in a kennel fire. J. Vet. Emerg. Crit. Care. [Internet]. 2012; 22(3):361-367. doi: https://doi.org/f35wdb DOI: https://doi.org/10.1111/j.1476-4431.2012.00759.x

Huang CC, Chen TH, Ho CH, Chen YC, Hsu CC, Lin HJ, Wang JJ, Chang CP, Guo HR. Increased risk of congestive heart failure following carbon monoxide poisoning. Circ. Heart Fail. [Internet]. 2021; 14(4):478-487. doi: https://doi.org/gq4ss3 DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.120.007267

Cardiga R, Proença M, Carvalho C, Costa L, Botella A, Marques F, Paulino C, Carvalho A, Fonseca C. Intoxicação por monóxido de carbono com compromisso cardíaco: o que sabemos? Rev. Port. Cardiol. [Internet]. 2015; 34(9):557.e1-557.e5. Portuguese. doi: https://doi.org/f3hbqw DOI: https://doi.org/10.1016/j.repc.2015.01.006

Publicado
2025-02-27
Cómo citar
1.
Gökdemir GS, Çakmak S, Demirtas B, Gökdemir MT, Sogut O, Canpolat–Erkan RE, Aşır F, Yokus B. El efecto de la intoxicación aguda por Monóxido de Carbono en la necrosis cardíaca en ratas: en relación con los niveles de Adiponectina. Rev. Cient. FCV-LUZ [Internet]. 27 de febrero de 2025 [citado 3 de abril de 2025];35(1):8. Disponible en: https://produccioncientificaluz.org./index.php/cientifica/article/view/43589
Sección
Medicina Veterinaria