Ganadería de precisión en búfalos: un enfoque sostenible para el futuro
Resumen
El crecimiento de la población mundial que se producirá en los próximos 30 años será responsable de un aumento de los alimentos de origen animal y de las proteínas de origen animal. El sector ganadero se verá obligado a afrontar nuevos retos, como la reducción del impacto ambiental, la mejora de la calidad y seguridad de los alimentos de origen animal, la reducción de antibióticos y el aumento de la eficiencia. Una de las estrategias que podrían adoptarse es la Ganadería de Pre-cisión (PLF), reconocida como la herramienta más sostenible para mejorar la sostenibilidad de las explotaciones agrícolas. Puede definirse como “el seguimiento continuo, automatizado y en tiempo real de la producción, la reproducción, la salud y el bienestar mediante la aplicación de tecnologías avanzadas de la información y la comunicación (TIC)”. En este nuevo concepto de granja, los animales, el medio ambiente, la maquinaria y los procesos se convierten en “objetos de información” para mejorar los datos; La gestión agrícola y los animales se definen como sistemas CITD: son complejos, individualmente diferentes, variables en el tiempo y dinámicos. Recientemente se han aplicado varias tecnologías PLF a los búfalos, mejorando algunos puntos críticos de la granja, como el ordeño, la nutrición, la reproducción y el manejo. Esta breve reseña reporta algunas experiencias realizadas en búfalos.
Descargas
Citas
Intergovernmental Panel on Climate ChangE (IPCC), 2023. Summary for policymakers. In: Core Writing Team, Lee, H., Romero, J. (Eds.), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, pp. 1–34. https://doi.org/10.59327/IPCC/AR6-9789291691647.001.
Upadhyay RC, Singh SV, Kumar A, Gupta SK. 2007. Impact of climate change on milk production of Murrah buffaloes. Ital J Anim Sci. 2007; 6(Suppl 2):1329–1332. doi: http://dx.doi.org/10.4081/ijas.2007.s2.1329.
MacLeod MJ, Vellinga T, Opio C, Falcucci A, Tempio G, Henderson B, Makkar H, Mottet A, Robinson T, Steinfeld H, Gerber PJ. Invited review: A position on the Global Livestock Environmental Assessment Model (GLEAM). Animal. 2018; 12(2):383-397. doi: https://doi.org/10.1017/S1751731117001847.
Phelps LN, Kaplan JO. Land use for animal production in global change studies: Defining and characterizing a framework. Global Change Biology 2017; 23(11):4457–
4471. doi: https://doi.org/10.1111/gcb.13732.
Potopová V, Musiolková M, Gaviria JA, Trnka M, Havlík P, Boere E, Trifan T, Muntean N, Chawdhery MRA. Water Consumption by Livestock Systems from 2002–2020 and Predictions for 2030–2050 under Climate Changes in the Czech Republic. Agriculture. 2023; 13(7):1291. doi: https://doi.org/10.3390/agriculture13071291.
Oz O, Sahin M, Akar O. Modeling of an HPS for the electric power demand of the cattle farm using genetic algorithm. Heliyon. 2023 Jun 13; 9(6):e17237. doi: https://doi.org/10.1016/j.heliyon.2023.e17237.
Kronberg SL, Provenza FD, van Vliet S, Young SN. Review: Closing nutrient cycles for animal production Current and future agroecological and socio-economic issues. Animal. 2021; 15(Suppl 1):100285. doi: https://doi.org/10.1016/j.animal.2021.100285.
Bertoni G. Human, Animal and Planet Health for Complete Sustainability. Animals (Basel). 2021; 11(5):1301. doi: https://doi.org/10.3390/ani11051301.
Pawar D, Lo Presti D, Silvestri S, Schena E, Massaroni C. Current and future technologies for monitoring cultured meat: A review. Food Res Int. 2023; 173(Pt.2):113464. doi: https://doi.org/10.1016/j.foodres.2023.113464.
Olivadese M, Dindo ML. Edible Insects: A Historical and Cultural Perspective on Entomophagy with a Focus on Western Societies. Insects 2023; 14(8):690. doi: https://doi.org/10.3390/insects14080690.
Tomiyama AJ, Kawecki NS, Rosenfeld DL, Jay JA, Raja gopal D, Rowat AC. Bridging the gap between the science of cultured meat and public perceptions. Trends in Food Science and Technology 2020; 104:144-152. doi: https://doi.org/10.1016/j.tifs.2020.07.019.
Tanga CM, Ekesi S. Dietary and Therapeutic Benefits of Edible Insects: A Global Perspective. Annu Rev Entomol. 2023. https://doi.org/10.1146/annurev-en- to-020123-013621.
Lovarelli D, Bacenetti J, Guarino, M., 2020. A review on dairy cattle farming: is precision livestock farming the compromise for an environmental, economic and social sustainable production? J. Clean. Prod. 2020; 262:121409. doi: https://doi.org/10.1016/j.jclepro.2020.121409.
Berckmans D.. General introduction to precision livestock farming, Animal Frontiers; 2017; 7(1):6–11. https:// doi.org/10.2527/af.2017.0102.
Norton T, Chen C, Larsen MLV, Berckmans D. Review: Precision livestock farming: building ‘digital representations’ to bring the animals closer to the farmer. Animal 2019; 13(12):3009-3017. doi: https://doi.org/10.1017/ S175173111900199X.
Berckmans D, Aerts JM. Integration of biological responses in the management of bioprocesses. Master Course in the Masters of BioSystems and of Human Health Engineering at KU Leuven 2016.
Food and Agriculture Organization of the United Nations (FAO). 2019. How to Feed the World in 2050. Editor(s):
P. Ferranti, E.M. Berry, J.R. Anderson (Eds). Elsevier, 2019: 481-487 (ISBN 9780128126882)https://www.fao.
org/fileadmin/templates/wsfs/docs/expert_paper/How_ to_Feed_the_World_in_2050.pdf https://www.fao.org/ faostat/en/#data/QCL.
Neglia G, De Nicola D, Esposito L, D’Occhio MJ, Fatone G. Reproductive management in buffalo by artificial insemination. Theriogenology 2020; 150:166–172. doi: https://doi.org/10.1016/j.theriogenology.2020.01.016.
Associazione Nazionale Allevatori Specie Bufalina (ANASB), 2023. https://www.anasb.it/statistiche/.
Garcia AR, Barros DV, de Oliveira Junior MCM, Barioni Junior W, da Silva JAR, Lourenço Junior JDB, dos Santos Pessoa J. 2020. Innovative use and efficiency test of subcutaneous transponders for electronic identification of water buffaloes. Trop Anim Health Prod. 2020; 52:3725- 3733. doi: https://doi.org/10.1007/s11250-020-02410-7.
Zhang J, Tian GY, Marindra AMJ, Sunny AI, Zhao AB. A Review of Passive RFID Tag Antenna-Based Sensors and Systems for Structural Health Monitoring Applications. Sensors. 2017; 17(2):265. doi: https://doi.org/10.3390/s17020265.
Stewart SC, Rapnicki P, Lewis JR, Perala M. Detection of low frequency external electronic identification devices using commercial panel readers. J Dairy Sci. 2007 Sep; 90(9):4478-82. doi: https://doi.org/10.3168/jds.2007-0033.
Cesarani A, Biffani S, Garcia A, Lourenco D, Bertolini G, Neglia G, Misztal I, Macciotta N. Genomic investigation of milk production in Italian Buffalo. Italian Journal of Animal Science 2021; 20:539-547. https://doi.org/10.1080/1 828051X.2021.1902404.
Brito LF, Bedere N, Douhard F, Oliveira HR, Arnal M, Peñagaricano F, Schinckel AP, Baes CF, Miglior F. Review: Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal 2021; 15(1):100292. https://doi.org/10.1016/j.animal.2021.100292.
Bickhart DM, McClure JC, Schnabel RD, Rosen BD, Medrano JF, Smith TPL. Symposium review: Advances in sequencing technology herald a new frontier in cattle genomics and genomeenabled selection. J. Dairy Sci. 2020; 103(6):5278-5290. doi: https://doi.org/10.3168/jds.2019-17693.
Strandén I, Kantanen J, Lidauer MH, Mehtiö T, Negussie E. Animal board invited review: Genomic-based improvement of cattle in response to climate change. Animal 2022; 16(12):100673. doi: https://doi.org/10.1016/j.animal.2022.100673.
Iamartino D, Nicolazzi EL, Van Tassell CP, Reecy JM, Fritz-Waters ER, Koltes JE, Biffani S, Sonstegard TS, Schroeder SG, Ajmone-Marsan P, Negrini R, Pasquariello R, Ramelli P, Coletta A, Garcia JF, Ali A, Ramunno L, Cosenza G, de Oliveira DAA, Drummond MG, Bastianetto E, Davassi A, Pirani A, Brew F, Williams JL. Design and validation of a 90K SNP genotyping assay for the water buffalo (Bubalus bubalis). PLoS One. 2017;12(10):e0185220. doi: https://doi.org/10.1371/journal. pone.0185220.
Ravi Kumar D, Nandhini PB, Joel Devadasan M, Sivalingam J, Mengistu DW, Verma A, Gupta ID, Niranjan SK, Kataria RS, Tantia MS. Genome-wide association study revealed suggestive QTLs for production and reproduction traits in Indian Murrah buffalo. 3 Biotech. 2023; 13(3):100. doi: https://doi.org/10.1007/s13205-023-03505-2.
Silva AA, Brito LF, Silva DA, Lazaro SF, Silveira KR, Stefani G, Tonhati H. Random regression models using B-splines functions provide more accurate genomic breeding values for milk yield and lactation persistence in Murrah buffaloes. J. Anim. Breed. Genet. 2023; 140(2):167- 184. doi: https://doi.org/10.1111/jbg.12746.
Lázaro SF, Tonhati H, Oliveira HR, Silva AA, Nascimento AV, Santos DJA, Stefani G, Brito LF. Genomic studies of milk-related traits in water buffalo (Bubalus bubalis) based on single-step genomic best linear unbiased prediction and random regression models. J Dairy Sci. 2021; 104(5):5768-5793. doi: https://doi.org/10.3168/jds.2020-19534.
Deng T, Liang A, Liang S, Pang C, Ma X, Lu X, Duan A, Pang C, Hua G, Liu S, Campanile G, Salzano A, Gasparrini B, Neglia G, Liang X, Yang L. Integrative Analysis of Transcriptome and GWAS Data to Identify the Hub Genes Associated with Milk Yield Trait in Buffalo. Frontiers in Genetics 2019; 10:36. doi: https://doi.org/10.3389/fge- ne.2019.00036.
Li J, Liu S, Li Z, Zhang S, Hua G, Salzano A, Campanile G, Gasparrini B, Liang A, Yang L. DGAT1 polymorphism in Riverine buffalo, Swamp buffalo and crossbred buffalo. J Dairy Res. 2018; 85(4):412-415. doi: https://doi. org/10.1017/S0022029918000468.
Liu JJ, Liang AX, Campanile G, Plastow G, Zhang C, Wang Z, Salzano A, Gasparrini B, Cassandro M, Yang LG. Genome-wide association studies to identify quantitative trait loci affecting milk production traits in water buffalo. J Dairy Sci. 2018; 101(1):433-444. doi: https://doi.org/10.3168/jds.2017-13246.
de Araujo Neto FR, Takada L, Dos Santos DJA, Aspilcueta-Borquis RR, Cardoso DF, do Nascimento AV, Leão KM, de Oliveira HN, Tonhati H. Identification of genomic regions related to age at first calving and first calving interval in water buffalo using single-step GBLUP. Reprod Domest Anim. 2020; 55(11):1565-1572. doi: https://doi.org/10.1111/rda.13811.
de Araujo Neto FR, Dos Santos JCG, da Silva Arce CD, Borquis RRA, Dos Santos DJA, Guimarães KC, do Nascimento AV, de Oliveira HN, Tonhati H. Genomic study of the resilience of buffalo cows to a negative energy balance. J Appl Genet. 2022; 63(2):379-388. doi: https://doi.org/10.1007/s13353-021-00680-x.
Jaiswal S, Jagannadham J, Kumari J, Iquebal MA, Gurjar AKS, Nayan V, Angadi UB, Kumar S, Kumar R, Datta TK, Rai A, Kumar D. Genome Wide Prediction, Mapping and Development of Genomic Resources of Mastitis Associated Genes in Water Buffalo. Front Vet Sci. 2021; 8:593871. doi: https://doi.org/10.3389/fvets.2021.593871.
Faugno S, Pindozzi S, Okello C, Sannino M. Testing the application of an automatic milking system on buffalo (Bubalus bubalis). J Agric Eng. 2015; 46:13–18. doi: https://doi.org/10.4081/jae.2015.437.
Verde MT, Matera R, Bonavolonta F, Angrisani A, Fezza C, Borzacchiello L, Cotticelli A, Neglia G. Comparative Performance Analysis Between Two Different Generations of Automatic Milking System. Acta Imeko 2023; (work accepted, in press).
Boselli C, De Marchi M, Costa A, Borghese A. Study of Milkability and Its Relation With Milk Yield and Somatic Cell in Mediterranean Italian Water Buffalo. Front Vet Sci. 2020; 7:432. doi: https://doi.org/10.3389/fvets.2020.00432.
Matera R, Angrisani L, Neglia G, Salzano A, Bonavolontà F, Verde MT, Piscopo N, Vistocco D, Tamburis O. Reliable use of smart cameras for monitoring biometric parameters in Buffalo Precision Livestock Farming. Acta Imeko; 2023 (Work accepted, in press).
Tamburis O, Matera R, Salzano A, Calamo A, Vistocco D, Neglia G. ‘Smart’ Buffalo Weight Estimation via Digital Technologies: Experiences from South Italy. Stud Health Technol Inform. 2023; 302:895-896. doi: https://doi. org/10.3233/shti230298.
Cotticelli A, Verde MT, Liccardo A, de Alteriis G, Matera R, Neglia G, Peric T, Prandi A, Bonavolontà F. On the Use of 3D Camera to Accurately Measure Volume and Weight of Dairy Cow Feed. Acta Imeko 2023; (Work accepted, in press).
Di Palo R, Campanile G, Zicarelli L. Tecnologie utilizzate per la rilevazione dei calori e inseminazione strumentale nella specie bufalina. Proceedings of the 1st Congresso Nazionale sull’Allevamento del Bufalo; 2001 Oct 03-05; Eboli, Italy. P. 100-113.
Porto-Filho RM, Gimenes LU, Monteiro BM, Carvalho NAT, Ghuman SPS, Madureira EH, Baruselli PS. Detection of estrous behavior in buffalo heifers by radiotelemetry following PGF2α administration during the early or late luteal phase. Animal Reproduction Science 2014; 144(3-4):90–94. doi: https://doi.org/10.1016/j.anireprosci.2013.12.006.
Neglia G, Matera R, Cotticelli A, Salzano A, Campanile G. Chapter 23 – PLF e allevamento bufalino. In: Zootecnia di Precisione e Tecnologie Innovative in Allevamento. Eds: Abeni F, Nannoni E, Sandrucci A. 2024; Le Point Veterinarie Italie (in press).
Yadav SK, Singh P, Kumar P, Singh SV, Singh A, Kumar S. 2019. Scrotal infrared thermography and testicular biometry: Indicator of semen quality in Murrah buffalo bulls. Anim Reprod Sci. 209: 106145. doi: https://doi.or- g/10.1016/j.anireprosci.2019.106145.
Quddus RA, Ahmad N, Khalique A, Bhatti JA. Validation of NEDAP Monitoring Technology for Measurements of Feeding, Rumination, Lying, and Standing Behaviors, and Comparison with Visual Observation and Video Recording in Buffaloes. Animals (Basel) 2022; 12(5):578. doi: https://doi.org/10.3390/ani12050578.
Quddus RA, Ahmad N, Khalique A, Bhatti JA. Evaluation of automated monitoring calving prediction in dairy buffaloes a new tool for calving management. Braz. J. Biol. 2022; 84:e257884. doi: https://doi.org/10.1590/1519- 6984.257884.
D’Andrea L, Guccione J, Alsaaod M, Deiss R, Di Loria A, Steiner A, Ciaramella P. Validation of a pedometer algorithm as a tool for evaluation of locomotor behaviour in dairy Mediterranean buffalo. J Dairy Res. 2017; 84(4):391-394. doi: https://doi.org/10.1017/S0022029917000668.
Costa A, De Marchi M, Neglia G, Campanile G, Penasa M. Milk somatic cell count-derived traits as new indicators to monitor udder health in dairy buffaloes. It. J. Anim. Sci. 2021; 20:548–558. Doi: https://doi.org/10.1080/1828 051X.2021.1899856.
Costa A, Neglia G, Negrini R, Campanile G, De Marchi M. (2020). Milk somatic cells and their relationships with milk yield and quality traits in a large population of Water Buffaloes. J. Dairy Sci. 2020; 103:5485–5494. Doi: https://doi.org/10.3168/jds.2019-18009.
Ali AKA, Shook GE. An optimum transformation for somatic cell concentration in milk. J. Dairy Sci. 1980; 63:487–490. doi: https://doi.org/10.3168/jds.S0022-0302(80)82959-6.
Bobbo T, Matera R, Biffani S, Gomez M, Cimmino R, Pedota G, Neglia G. Exploring the sources of variation of electrical conductivity, total and differential somatic cell count in the Italian Mediterranean Buffaloes. J. Dairy Sci. 2023; S0022-0302(23)00659-8. Doi: https://doi.org/10.3168/jds.2023-23629
Bobbo T, Matera R, Pedota G, Manunza A, Cotticelli A, Neglia G, Biffani S. Exploiting machine learning methods with monthly routine milk recording data and climatic information to predict subclinical mastitis in the Italian Mediterranean Buffaloes. J. Dairy Sci. 2023; 106:1942– 1952. Doi: DOI number: https://doi.org/10.3168/jds.2022- 22292.
Matera R., Di Vuolo G., Cotticelli A., Salzano A., Neglia G., Cimmino R., D’Angelo D., Biffani S. Relationship among milk conductivity, production traits and somatic cell score in the Italian Mediterranean Buffalo. Animals 2022; 12:2225. doi: https://doi.org/10.3390/ani12172225.
Koga A, Sugiyama M, Del Barrio AN, Lapitan RM, Arenda BR, Robles AY, Cruz LC, Kanai Y. 2004. Comparison of the thermoregulatory response of buffaloes and tropical cattle, using fluctuations in rectal temperature, skin temperature and haematocrit as an index. J Agric Sci. 2004; 142(3): 351–355. doi: https://doi.org/10.1017/ S0021859604004216.
Marai IFM, Haeeb AAM. 2010. Buffalo’s biological functions as affected by heat stress — a review. Livest Sci. 2010; 127(2-3):89–109. doi: https://doi.org/10.1016/j.livs- ci.2009.08.001.
Matera R, Cotticelli A, Gómez Carpio M, Biffani S, Iannaccone F, Salzano A, Neglia G. Relationship among production traits, somatic cell score and THI in the Italian Mediterranean Buffalo. It. J. Anim. Sci. 2022; 21:551–561. doi: https://doi.org/10.1080/1828051X.2022.2042407.
Chagunda MGG, Ross D, Rooke J, Yan T, Douglas JL, Poret L, McEwan NR, Teeranavattanakul P, Roberts DJ. Measurement of enteric methane from ruminants using a hand-held laser methane detector. Acta Agric. Scand. A Anim. Sci. 2013:63:68–75. Doi: https://doi.org/10.1080/0 9064702.2013.797487.
Meo Zilio D, Steri R, Iacurto M, Catillo G, Barile V, Chiariotti A, Cenci F, La Mantia MC, Buttazzoni L. (2022). Precision Livestock Farming for Mediterranean Water Buffalo: Some Applications and Opportunities from the Agridigit Project. In: Biocca, M., Cavallo, E., Cecchini, M., Failla, S., Romano, E. (eds) Safety, Health and Welfare in Agriculture and Agro-food Systems. SHWA 2020. Lecture Notes in Civil Engineering, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-030-98092-4_5.
Valente GF, Ferraz GAeS, Santana LS, Ferraz PFP, Ma- riano DdC, dos Santos CM, Okumura RS, Simonini S, Barbari M, Rossi G. Mapping Soil and Pasture Attributes for Buffalo Management through Remote Sensing and Geostatistics in Amazon Biome. Animals. 2022; 12(18):2374. https://doi.org/10.3390/ani12182374.
Spina AA, Ceniti C, Piras C, Tilocca B, Britti D, Morittu VM. 2022. Mid-infrared (Mir) spectroscopy for the detection of cow’s milk in buffalo milk. J Anim Sci Technol. 64(3): 531–538.