Revista Cienfica, FCV-LUZ / Vol. XXXV Recibido: 27/10/2024 Aceptado:02/01/2024 Publicado: 12/03/2025 hps://doi.org/10.52973/rcfcv-e35549 UNIVERSIDAD DEL ZULIA Serbiluz Sistema de Servicios Bibliotecarios y de Información Biblioteca Digital Repositorio Académico 1 of 7 Effect of biological silage from Litopenaeus vannamei heads on the gut microbial composion and health of laying hens Efecto del ensilado biológico de cabeza de Litopenaeus vannamei en la composición microbiana intesnal y la salud de gallinas ponedoras ¹Universidad Nacional de Tumbes. Grupo de investigación Biotecnología Sustentable en alimentación y salud animal en Medicina Veterinaria y ²Universidad Nacional de Tumbes. Facultad de Ingeniería Pesquera y Ciencias del Mar. Calle Los Ceibos S/N. Puerto Pizarro, Tumbes, Perú. ³Universidad Nacional de Frontera. Facultad de Industrias Alimentarias, Escuela de Ingeniería en biotecnología. Calle Los Ceibos S/N. Sullana, Piura, Perú. ⁴Universidad Nacional Agraria la Molina. Facultad de Zootecnia. Av. La Molina. La Molina, Lima, Perú. ⁵Universidad Nacional de Tumbes. Facultad de Ciencias Agrarias. Corrales, Tumbes, Perú. *Autor de correspondencia: hsanchezs@untumbes.edu.pe. ABSTRACT The aim of this study was to analyze the microbial composion associated with the intesnal health of laying hens. Over a 4-week period, 30-week-old hens were fed a basal diet containing 16% protein (T0), compared to another diet supplemented with 18% shrimp head (Litopenaeus vannamei) biological silage (BS), which had a protein content of 16.76% (T3E). Samples for metagenomic analysis were taken from the jejunal content of the birds using the E.Z.N.A.® Soil DNA Kit (Omega Bio-Tek Inc., USA). A significant increase in beneficial bacteria was observed at the class level, including Bacteroidia and Bacilli; at the family level, Bacteroidaceae and Lactobacillaceae; and at the genus level, Bacteroides and Lactobacillus. A decrease in harmful bacteria was noted, parcularly in the class Erysipelotrichia, family Helicobacteraceae, and genus Holdemania, many of which play key roles in intesnal health. The use of the diet with BS promoted an increase in beneficial microorganisms and a reducon in harmful ones, suggesng a favorable modificaon in the bacterial flora composion, linked to improved intesnal health, making BS a potenal funconal food. Key words: Funconal food; lacc acid bacteria; hen feeding; bacterial gut metagenomics; intesnal health; Litopenaeus vannamei RESUMEN El objevo de este estudio fue analizar la composición microbiana asociada con la salud intesnal de gallinas ponedoras, suplementadas con ensilaje biológico. Durante un período de 4 semanas, se alimentó a gallinas de 30 semanas de edad con una dieta base que contenía 16% de proteína (T0), en comparación con otra dieta suplementada con un 18% de ensilado biológico de cabeza de langosno Litopenaeus vannamei (BS), con un contenido proteico de 16,76% (T3E). Las muestras para el análisis metagenómico se obtuvieron del contenido del yeyuno de las aves ulizando el kit E.Z.N.A.® Soil DNA (Omega Bio-Tek Inc., USA). Se observó un aumento significavo de bacterias benéficas de las clases Bacteroidia y Bacilli; de las familias Bacteroidaceae y Lactobacillaceae y de los géneros Bacteroides y Lactobacillus, Se observó también una disminución de bacterias perjudiciales de la clase Erysipelotrichia, de la familia Helicobacteraceae y del género Holdemania, muchas de las cuales juegan un papel clave en la salud intesnal. El uso de la dieta con BS promovió un incremento de microorganismos beneficiosos y una reducción de aquellos perjudiciales, lo que sugiere una modificación favorable en la composición de la flora bacteriana, vinculada a la mejora de la salud intesnal por lo que el BS puede ser considerado un suplemento funcional. Palabras claves: Ensilaje biológico; flora bacteriana; alimentación de gallinas; metagenómica; salud intesnal; Litopenaeus vannamei Gloria Ochoa Mogollón 1 , Alberto Ordinola-Zapata 2 , Grazia Sanchez-Ochoa 3 , Enedia Vieyra-Peña 2 , Gloria Palacios-Pinto 4 , Héctor Sánchez-Suárez 5 * Zootecnia. Facultad de Ciencias Agrarias. Corrales, Tumbes, Perú.
Used of L. vannamei silage on microbiota and health of laying hens / Ochoa et al. UNIVERSIDAD DEL ZULIA Serbiluz Sistema de Servicios Bibliotecarios y de Información Biblioteca Digital Repositorio Académico INTRODUCTION Gut health is fundamental for animals to reach their maximum producve potenal. The gut microbiota, which is largely shaped by diet, undergoes dynamic changes over me, influencing both gut health and the prevalence of dominant microorganisms [1]. The inclusion of pre-digested feeds containing Lactobacillus has been shown to enhance the intesnal microbiota, thereby supporng the overall health and producvity of poultry (Gallus gallus domescus). Studies have highlighted that Lactobacillus species, with their fermentave and probioc properes, are beneficial to animal well-being [2]. Biological silage (BS), a fermentaon technique using lacc acid bacteria (LAB), has proven effecve in improving producve parameters in monogastric animals [3]. This underscores the importance of invesgang the intesnal microbiota in relaon to diet to opmize both health and producvity in animals [4 , 5]. BS not only preserves essenal nutrients but also promotes the growth of beneficial bacteria and the producon of short- chain fay acids [6]. The industry connuously seeks high- performance LAB to enhance animal nutrion [7], focusing on beneficial bacteria such as Bacteroidetes and Firmicutes, along with other key families important for gut health [8]. Notably, Lactobacillus brevis has demonstrated probioc properes by improving gut health in poultry through lacc acid producon [9]. This study aimed to analyze the microbial composion of the digesve tract in laying hens poultry (Gallus gallus domescus), through metagenomic analysis, assessing the impact of a diet supplemented with Litopenaeus vannamei (BS) on the gut flora and the increase of beneficial microorganisms. MATERIALS AND METHODS The study was conducted at the Universidad Nacional de Tumbes, Peru (latude 03º 35’ 21.1’’ South, longitude 80º 30’ 04.6’’ West, altude 5 m.a.s.l.), within the Facultad de Ciencias Agrarias and Facultad de Ciencias de la Salud. A descripve design was used, involving 20 Hy-Line Brown laying hens (Gallus gallus domescus) aged between 30 and 35 weeks, distributed into two treatments: T0 (diet without biological silage) and T3E (diet with a 12% biological silage in dry maer), with 10 hens per treatment. All birds received a basal diet containing 16% protein for 30 days (d). The BS was prepared through controlled bacterial fermentaon, using 70% Litopenaeus vannamei head, 25% acvator (cane molasses), and 5% funconal ferment containing Lactobacillus brevis The basal diet was prepared by controlled bacterial fermentaon [10]. The Litopenaeus vannamei head (pre-cooked for 5 min), molasses and funconal ferment (acvated bacteria in whole milk) were poured in and mixed in a 500 L tank, hermecally sealed unl use aſter 30 days of fermentaon [10]. The viability of the BS was assessed through tratable acidity, pH (HANNA HI8424 Portable pH/ORP Meter, Mexico), presence of pathogenic bacteria, and counts of LAB and total mesophiles [11]. Samples of BS (200 g) were taken at 3, 5, 10, 15, and 30 d, with microbiological tests performed on d 15 and 30 [10 , 12]. For metagenomic evaluaon of the jejunum in hens. The jejunum of birds has a low bacterial load and helps to prevent early imbalances in intesnal health. It is directly influenced by the food, manifesng itself in the integrity of the mucosa and promong the presence of beneficial microorganisms [13]. Genomic DNA was extracted using the E.Z.N.A.® Soil DNA kit (Omega Bio-Tek Inc., USA) and quanfied with a spectrophotometer (EzDrop1000, Blue-Ray Biotech, BRED-1000, Taiwan). DNA was stored at -30°C (Laboratory ultra-freezer, UF V 700, Germany) unl further analysis. DNA aliquots were sent to MR DNA (USA) for genec sequencing (bTEFAP Illumina Miseq (2x300 PE)) of bacterial diversity, using bTEFAP® Illumina technology targeng the 16S rRNA gene. The data were analyzed usingMothur soſtware [12], and processed for Scimago graphs. RESULTS AND DISCUSSION The molecular idenficaon of the Lactobacillus brevis strain confirmed its role as a key fermentave bacterium in the preparaon of the biological silage (BS). This bacterium, naturally found in the digesve tract of chickens, has demonstrated beneficial properes, including anmicrobial acvies and probioc effects in both poultry and humans [14]. Silage viability assessment The BS maintained a stable pH below 4.6 and an acidity level above 2.5%, indicang that the BS is suitable and safe for use. These parameters stabilized by the fiſth day of fermentaon and remained consistent unl day 30 [11 , 15]. Regarding microbiological viability, the BS showed a concentraon of more than 10x10⁶ CFU of lacc acid bacteria (LAB), a sufficient level to ensure the physiological benefits of the product. Addionally, the levels of yeast and fungi at 15 and 30 d of fermentaon were within acceptable limits for probioc foods according to Colombian regulaons [16], and no pathogens such as Salmonella sp. were detected, likely due to the acidic condions generated by the LAB [10]. The protein content of the BS remained at 23%, lower than the 28% found in fish silage [17]. Changes in Gut Microbiota Associated with T3E Treatment The T3E treatment showed a significant increase in several bacterial classes, families, genera, and species associated with potenal benefits for gut health. This effect may be aributed to the use of shrimp head silage, which influences the composion and funcon of the microbiota. Predominant classes in both treatments In both treatments, the class Bacteroidia was dominant, represenng 36.93% in T0 and 37.94% in T3E. This class is known for its role in polysaccharide degradaon and short-chain fay acid producon, which benefits intesnal health [18], as shown in FIG.1A. Changes in Bacterial Classes FIG. 1A shows that the classes Deltaproteobacteria, Bacilli, and Clostridia significantly increased in T3E.Deltaproteobacteria: Increased from 4.09% at T0 to 13.69% in T3E. Their modulaon may be related to dietary factors and the presence of pre/ probiocs [19]. 2 of 7
Revista Cienfica, FCV-LUZ / Vol. XXXV UNIVERSIDAD DEL ZULIA Serbiluz Sistema de Servicios Bibliotecarios y de Información Biblioteca Digital Repositorio Académico Bacilli and Clostridia: Increased from 3.86% to 12.46% and from 4.69% to 12.82%, respecvely. These classes include bacteria with probioc roles and involvement in the producon of short-chain fay acids (SCFAs) [20]. Classes with higher abundance in T0 Epsilonproteobacteria was more abundant in T0 (7.34%) than in T3E (3.38%). This bacterial class is associated with intesnal dysbiosis and plays a role in sulfur oxidaon, a characterisc acvity of this lineage [20], Erysipelotrichia exhibited a significant difference between treatments, showing a higher value in T0 (22.13%) and a markedly lower value in T3E (0.28%). This class is linked to high-fat diets and dyslipidemia issues in humans [21], (FIG.1A). Changes in Bacterial Families FIG. 1B illustrates increases in families such as Bacteroidaceae, Lactobacillaceae, Bdellovibrionaceae, and Lachnospiraceae, which are known for their roles in digesng complex carbohydrates, producing SCFAs, and modulang pathogens [22 , 23 , 24 , 25]. Bacterial families with higher presence in the T0 treatment FIG. 1B also shows that the Sphingobacteriaceae family had a higher abundance in T0 (9.22%) compared to T3E (2.16%). This family is found in the excreta of fish and birds suscepble to enzyme restricon diseases. Erysipelotrichaceae exhibited a notable difference, being significantly more abundant in T0 (22.1%) and almost absent in T3E (0.21%). This family is associated with metabolic disorders and inflammaon in humans and rats; its decrease may be related to diets that promote fiber fermentaon [26] and is linked to obesity and infecons [27 , 28]. Changes in Bacterial Genera FIG. 2A highlights increases in genera such as Bacteroides, Lactobacillus, and Vampirovibrio. Bacteroides: Increased from 21.4% at T0 to 29.8% in T3E, associated with the degradaon of complex polysaccharides and compeon with pathogens [29]. Lactobacillus: Increased from 3.8% to 12.03%, playing a key probioc role in pathogen inhibion and enhancing immune response [30 , 31 , 32]. FIGURE 1. Changes in bacterial abundance in the jejunum of hens fed with biological si- lage (T3E) and without BS (T0) according to class (A) and family (B) Significant decreases in bacterial genus in T3E Helicobacter decreased from 7.26 in T0 to 3.26% in T3E, which is beneficial since some species, such as Helicobacter pullorum, are pathogenic and can cause digesve issues in birds [33], Mucilaginibacter decreased from 9.17 in T0 to 2.11% in T3E. Although its role in intesnal health is unclear, it has been associated with diets containing olive oils, the presence of lepn in rats, and an increase in metabolic issues linked to high-fructose diets [34]. Prevotella declined from 3.45 in T0 to 0.21% in T3E. This genus is associated with metabolic problems caused by mycotoxins in feed, and with corn and soybean diets, which are rich in fibrous carbohydrates [35 , 36]. Genera such as Eubacterium, Alispes, and Parabacteroides show slight decreases but remain important for intesnal metabolism and the producon of short-chain fay acids (SCFAs). Eubacterium produces butyrate, essenal for intesnal epithelial health and possessing an-inflammatory properes, contribung to fiber breakdown and intesnal barrier integrity [37]. Holdemania decreased dramacally from 21.96% in T0 to 0.16% in T3E, suggesng that silage is not favorable for this genus. It is associated with inflammaon and dysregulaon in bile acid metabolism, affecng the intesne’s ability to efficiently process nutrients [38]. Proteobacteria include genera such as Methanobrevibacter and Desulfovibrio, which also show decreases. Methanobrevibacter helps stabilize the intesnal environment by ulizing hydrogen, prevenng gas accumulaon and improving digeson [39] (FIG. 2A). 3 of 7
Used of L. vannamei silage on microbiota and health of laying hens / Ochoa et al. UNIVERSIDAD DEL ZULIA Serbiluz Sistema de Servicios Bibliotecarios y de Información Biblioteca Digital Repositorio Académico FIGURE 2. Changes in bacterial abundance in the jejunum of hens fed with biological si- lage (T3E) and without BS (T0) according to genus (A) and species (B) Changes in Bacterial Species FIG. 2B shows variaons in specific species: Bacteroides sal- anitronis and Lactobacillus kitasatonis significantly increased, promong a healthy gut microbiota [40 , 41]. Helicobacter pullo- rum and Holdemania filiformis decreased, which could indicate a more favorable intesnal environment in T3E [42]. New species such as Cerasicoccus frondis and Haliangium tepidum emerged, possibly promoted by the silage, with potenal probioc and anmicrobial properes [43]. Vicvallis vadensis decreased from 2.32% to 1.94%, suggesng a reducon in favorable feed- ing condions in T3E, related to the digeson of diets high in soluble and insoluble fiber [44]. Other species were found in lower proporons, such as Peptoclostridium clostridium difficile (T0: 0.01 to T3E: 0.37%), which can cause severe intesnal in- fecons, and Shigella sonnei (T0: 0.011 to T3E: 0.038%), which is pathogenic [45]. Decreasing species, such as Bacteroides uniformis, showed a decline from 6.12 to 2.07%, associated with high-fiber diets in humans and chickens [46] Although generally beneficial for carbohydrate fermentaon [47], Vampirovibrio chlorellavorus increased significantly in T3E (10.28%) compared to T0 (2.97%), suggesng that its presence is related to marine-derived silage [32]. Clostridium ruminanum remained constant, indicang that silage does not negavely affect their funcons. These spe- cies are important for fiber fermentaon and cholesterol con- version [48]. Beneficial species for intesnal health Most lactobacilli enhance intesnal health by producing bacteriostac compounds and lacc acid, which lower intesnal pH and inhibit pathogenic bacteria [49]. Similar studies have observed an increase in the abundance and diversity of Lactobacillus flora in the jejunum and cecum of chickens, such as L. agilis and L. salivarius, promong a stable intesnal microbiota. These lactobacilli improve nutrient absorpon and intesnal architecture, contribung to beer growth performance and immune response. They play key protecve roles by lowering environmental pH through lacc acid producon [42]. Bifidobacteria species also enhance daily egg producon in chickens when combined with Lactobacillus casei, indicang beer overall health and producvity, posively influencing ileal and cecal microbiota [50]. Other species idenfied include Bacteroides, considered part of the normal intesnal biome in chickens, establishing a balanced microbial community. A higher abundance in the gut may be beneficial, as seen with Lactobacillus salivarius supplementaon [42], Collecvely, these probiocs improve intesnal health by opmizing microbial balance, nutrient absorpon, and immune response, leading to beer growth performance and producvity in chickens [51]. Considering the factors inherent to biological silage of shrimp heads, this seems to have a considerable impact on the composion of the bacterial community. Some species show a significant increase in their abundance, which could be related to anaerobic condions and changes in pH [4]. Idenfying changes in the microbiota can help predict and prevent potenal microbiological risks in silage feed [52]. CONCLUSION The biological silage of shrimp heads significantly influences the bacterial composion of the digesve tract in chickens, increasing the abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium. This fosters a balanced and healthy intesnal environment while reducing the presence of harmful species. Idenfying these changes in the microbiota is crucial for opmizing the quality of the silage, benefing both animal nutrion and sustainability in animal feed producon by ulizing marine by-products. ACKNOWLEDGEMENTS Universidad Nacional de Tumbes, for its uncondional support to the research. Project Res. Nº 0069-2022-UNTUMBES- CU RED BUDE PAV-AM CYTEC Conflict of Interests The authors declare that there is no conflict of interest. BIBLIOGRAPHIC REFERENCES [1] Oladele P, Ngo J, Chang T, Johnson TA. Temporal dyna- mics of fecal microbiota community succession in broi- ler chickens, calves, and piglets under aerobic exposure. Microbiol. Spectr. [Internet]. 2024; 12(6):e04084-23. doi: hps://doi.org/n8m5 4 of 7
Revista Cienfica, FCV-LUZ / Vol. XXXV UNIVERSIDAD DEL ZULIA Serbiluz Sistema de Servicios Bibliotecarios y de Información Biblioteca Digital Repositorio Académico [2] Arreguin-Nava MA, Graham BD, Adhdekari B, Agnello M, Selby CM, Hernandez-Velasco X, Vuong CN, Solis-Cruz B, Hernandez-Patlan D, Latorre JD, Tellez G, Hargis BM, Tellez-Isaias. In ovo Administraon of Defined Lacc Acid Bacteria Previously Isolated From Adult Hens Induced Va- riaons in the Cecae Microbiota Structure and Enteroba- cteriaceae Colonizaon on a Virulent Escherichia coli Ho- rizontal Infecon Model in Broiler Chickens. Front. Vet. Sci. [Internet]. 2020; 7:489. doi: hps://doi.org/n8m7 [3] Gaviria YS, Figueroa OA, Zapata JE. Efecto de la inclusión de ensilado químico de vísceras de lapia roja (Oreochro- mis spp.) en dietas para pollos de engorde sobre los pará- metros producvos y sanguíneos. Inf. Tecnol. [Internet]. 2021; 32(3):79-88. doi: hps://doi.org/n8m8 [4] Guimarães CC, Maciel IV, Silva AF, Lopes AF, Ramón Carpio KC, Inhamuns da Silva AJ. Aspectos biotecnológi- cos da silagem biológica de resíduos do Tambaqui. Revis- ta de Agronegocios y Medio Ambiente. [Internet]. 2021; 14(1):205-215. doi: hps://doi.org/n8m9 [5] Mogollón CR, Mogollón GO, Aguilera RA, Orz JQ, Suárez HS. Producon and evaluaon of probioc milk inocula obtained from the digesve tract of piglets (Sus scrofa domescus) proposed for pig feed. Rev. Mex. Ciencias Pecu. [Internet]. 2021; 12(1):120–137. doi: hps://doi. org/n8nb [6] Lopes JL, Gomes FA, Barreto LB, Rosa BL, De Souza LP, Ferreira JB, De Freitas HJ. Silagem ácida e biológica de resíduos de peixes produzidos na Amazônia ocidental – Acre. Braz. J. Dev. [Internet]. 2020; 6(6):36677–36693. doi: hps://doi.org/n8nc [7] Safari R, Yaghoub-Zadeh Z, Bankeh-Saz Z, Reyhani-Poul S, Jafari A, Abbaszadeh MM. Evaluaon of quality and chemical spoilage indicators of biological silage produced from chicken waste and its comparison with meat pow- der, blood powderand kilka fishpowder. J. Food Sci. Tech- nol. [Internet]. 2022; 18(121):203–213. doi: hps://doi. org/n8ng [8] Bunte S, Grone R, Keller B, Keller C, Galvez E, Strowig T, Kamphues J, Hankel, J. Intesnal Microbiota of Faen- ing Pigs Offered Non-Fermented and Fermented Liquid Feed with and without the Supplementaon of Non-Fer- mented Coarse Cereals. Microorganisms [Internet]. 2020; 8(5):638. doi: hps://doi.org/n8nj [9] Abbas S, Riaz A, Nawaz SK, Arshad N. Probioc potenal of locally isolated strain lactobacillus brevis mf179529 and its comparison with commercial probiocs in chicken model. Pakistan J. Agric. Sci. [Internet]. 2021 [cited Au- gust 12, 2024]; 58(1):135–141. Available in: hps://goo. su/U0nnu [10] Casllo WEG, Sánchez HAS, Ochoa GMM. Evaluación del ensilado de residuos de pescado y de cabeza de langos- no fermentado con Lactobacillus fermentus aislado de cerdo. Rev. Invesg. Vet. Peru. [Internet]. 2019[cited 18 Agosto, 2024]; 30(4):1456–1469. doi: Available in: h- ps://goo.su/yvrnGP6 [11] Plaza JL, Bolívar G, Ramírez C. Effect of drying process in silage from fish waste with L. Plantarum in physicochem- ical and microbiological characteriscs of the product. Vitae. [Internet]. 2016[cited 2023 May 11]; 23(1):S299– S303. Available in: hps://goo.su/hHbUf [12] Schloss PD, Westco SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, plat- form-independent, community-supported soſtware for describing and comparing microbial communies. Appl. Environ. Microbiol. [Internet]. 2009; 75(23):7537-7541. doi: hps://doi.org/fqcv8t [13] Dobrowolski P, Tomaszewska E, Klebaniuk R, Tomczyk- Warunek A, Szymańczyk S, Donaldson J, Świetlicka I, Mielnik-Błaszczak M, Kuc D, Muszyński S. Structural changes in the small intesne of female turkeys receiving a probioc preparaon are dose and region dependent. Animal. [Internet]. 2019; 13(12):2773-2781. doi: hps:// doi.org/n8pg [14] Ostadzadeh M, Habibi Najafi MB, Ehsani MR. Lacc acid bacteria isolated from tradional Iranian buer with pro- bioc and cholesterol-lowering properes: In vitro and in situ acvity. Food Sci. Nutr. [Internet]. 2022; 11(1):350- 363. doi: hps://doi.org/n8ph [15] Fernández-Herrero AL, Tabera A, Agüeria D, Sanzano P, Grosman F, Manca E. Obtención, caracterización mi- crobiológica y sico-química de ensilado biológico de carpa (Cyprinus carpio). REDVET. [Internet]. 2011[Cited Noviembre 5 2024]; 12(8):1-15. Available in: hps:// goo.su/OSyUA [16] Garavito Godriguez NJ. Norma Técnica NTC Colombiana 805.- Academia.edu [Internet]. 2017[cited July 17, 2024]. Available in: hps://n9.cl/pz7q5x [17] Costa MNF, Furtado YIC, Monteiro CC, Brasiliense ARP, Yoshioka ETO. Physiological responses of tambaqui (Co- lossoma macropomum) fed diets supplemented with si- lage from fish and vegetables residues. Braz. J. Biol. 2024; 84:e255493. doi: hps://doi.org/n8pk [18] Qiao J, Shang Z, Liu X, Wang K, Wu Z, Wei Q, Li H. Regula- tory Effects of Combined Dietary Supplementaon With Essenal Oils and Organic Acids on Microbial Communi- es of Cobb Broilers. Front. Microbiol. [Internet]. 2022; 12:814626. doi: hps://doi.org/n8pm [19] Luullina G, Pudova D, Gogoleva N, Shagimardanova E, Mardanova A. Effect of the total fracon of Bacillus sub- lis GM5 lipopepdes on the growth parameters and formaon of the bacterial microbiota of broiler chickens. E3S Web Conf. [Internet]. 2020; 222:02053. doi: hps:// doi.org/n8pn [20] Giraffa G, Chanishvili N, Widyastu Y. Importance of lac- tobacilli in food and feed biotechnology. Res. Microbiol. [Internet]. 2010; 161(6):480-487: doi: hps://doi.org/ bptn43 [21] Teng D, Jia W, Wang W, Liao L, Xu B, Gong L, Dong H, Zhong L, Yang J. Causality of the gut microbiome and atherosclerosis-related lipids: a bidireconal Mendelian Randomizaon study. BMC Cardiovasc. Disord. [Inter- net]. 2024; 24:138. doi: hps://doi.org/n8pp [22] Rychlik I. Composion and Funcon of Chicken Gut Mi- crobiota. Animals. [Internet]. 2020; 10(1):103. doi: h- ps://doi.org/n8pq [23] Figueiredo G, Gomes, M, Covas C. Mendo S, Caetano T. The Unexplored Wealth of Microbial Secondary Metabo- lites: the Sphingobacteriaceae Case Study. Microb. Ecol. [Internet]. 2022; 83:470–481. doi: hps://doi.org/gj2m [24] Cho S, Kumar SS, Ramirez S, Valientes R, Kim IH. Dietary eubiocs of microbial muramidase and glycan improve 5 of 7
Used of L. vannamei silage on microbiota and health of laying hens / Ochoa et al. UNIVERSIDAD DEL ZULIA Serbiluz Sistema de Servicios Bibliotecarios y de Información Biblioteca Digital Repositorio Académico intesnal villi, ileum microbiota composion and produc- on trait of broiler. J. Anim. Sci. Biotechnol. [Internet]. 2024; 15:59. doi: hps://doi.org/n8ps [25] Xiang-Yu W, Jin-Xin M, Wei Xin R, He M, Liu G, Liu R, Hong Li G, Zhao Q Xiao-Xuan Z, Hong-Bo N. Amplicon-based metagenomic associaon analysis of gut microbiota in relaon to egg-laying period and breeds of hens. BMC Microbiol. [Internet]. 2023; 23:138. doi: hps://doi.org/ n8pt [26] Altaher YW, Jahromi MF, Ebrahim R, Zulkifli I, Liang JB. Lactobacillus pentosus Ita23 and L. Acidipiscis Ita44 en- hance feed conversion efficiency and beneficial gut mi- crobiota in broiler chickens. Braz. J. Poult. Sci. [Internet]. 2015; 17(2):159-164. doi: hps://doi.org/n8pv [27] Acharya KD, Parakoyi AER, Tetel MJ. Endocrine Disrupon and the Gut Microbiome. Endocr. Disrupt. Hum. Heal. [In- ternet]. 2022;355-376. doi: hps://doi.org/n8pw [28] Duseja A, De A, Wong V. Special Populaon: Lean Non- alcoholic Fay Liver Disease. Clin. Liver. Dis. [Internet]. 2023; 27(2):451-469. doi: hps://doi.org/n8px [29] Lin Y, Zhao W, Shi ZD, Gu HR, Zhang XT, Ji X, Zou XT, Gong JS, Yao W. Accumulaon of anbiocs and heavy metals in meat duck deep lier and their role in persistence of anbioc-resistant Escherichia coli in different flocks on one duck farm. Poult. Sci. [Internet]. 2017; 96(4):997- 1006. doi: hps://doi.org/n8pz [30] Navale VD, Yadav R, Khilari A, Dharne M, Shanmugam D, Vamkudoth KR. Dietary Supplementaon of Lactococ- cus lacs subsp. lacs BIONCL17752 on Growth Perfor- mance, and Gut Microbiota of Broiler Chickens. Probiot- ics Anmicrob. Proteins [Internet]. 2024. 2024:1-14. doi: hps://doi.org/n8p2 [31] Shabbir U, Rubab M, Daliri EBM, Chelliah R, Javed A, Oh DH. Curcumin, Quercen, Catechins and Metabolic Dis- eases: The Role of Gut Microbiota. Nutr. [Internet]. 2021; 13(1):206. doi: hps://doi.org/gpt7vd [32] Soo RM, Woodcroſt BJ, Parks DH, Tyson GW, Hugenholtz P. Back fromthe dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus. PeerJ. [In- ternet]. 2015; 3:e968. doi: hps://doi.org/gmww [33] Quaglia NC, Capuozzo F, Ioanna F, De Rosa M, Dambrosio A. Occurrence of Helicobacter pullorum in Retail Chicken Meat: A One-Health Approach to Consumer Health Pro- tecon. Foods. [Internet]. 2024; 13(6):845. doi: hps:// doi.org/n8p5 [34] Prieto I, Hidalgo M, Segarra AB, Marnez-Rodrí- guez AM, Cobo A, Ramírez M, Abriouel H, Gálvez A, Marnez-Cañamero M. Influence of a diet enriched with virgin olive oil or buer on mouse gut microbiota and its correlaon to physiological and biochemical parame- ters related to metabolic syndrome. PLoS One [Internet]. 2018; 13(1):e0190368. doi: hps://doi.org/n8p6 [35] Jia B, Lin H, Yu S, Liu N, Yu D, Wu A. Mycotoxin deoxyniva- lenol-induced intesnal flora disorders, dysfuncon and organ damage in broilers and pigs. J. Hazard. Mater. [In- ternet]. 2023; 451:131172. doi: hps://doi.org/gwdjbj [36] Kyoung H, Kim E, Cho JH, Lee H, Kim Y, Park KI , Song M. Dietary yeast cell wall enhanced intesnal health of broil- er chickens by modulang intesnal integrity, immune responses, and microbiota. Poult. Sci. [Internet]. 2023; 102(6):102660. doi: hps://doi.org/n8p8 [37] Molnár A, Such N, Farkas V, Pál L, Menyhárt L, Wágner L, Husvéth, F.; Dublecz, K. Effects of wheat bran and clos- tridium butyricum supplementaon on cecal microbiota, short-chain fay acid concentraon, ph and histomor- phometry in broiler chickens. Animals. [Internet]. 2020; 10(12):2230. doi: hps://doi.org/n8p9 [38] Jia X, Hu P, Wang P, Ding Q, Wang E, Xie Z, Tu Z, Zhang L. Digesve Stability of Tannin-Enriched Fracon of Rubus chingii Hu Fruits and Its Regulatory Effect on the Intes- nal Microflora. Food Sci. [Internet]. 2023; 44(9):104-113. doi: hps://doi.org/n8qb [39] Kim JY, Whon TW, Lim MY, Kim YB, Kim N, Kwon MS, Kim J, Lee SH, Choi HJ, Nam IH, Chung WH, Kim JH, Bae JW, Roh SW, Nam Y. Do.The human gut archaeome: Idenfi- caon of diverse haloarchaea in Korean subjects. Micro- biome. [Internet]. 2020; 8:114. doi: hps://doi.org/n8qc [40] Wang B, Du P, Huang S, He D, Chen J, Wen X, Yang J, Xian S, Cheng Z. Comparison of the caecal microbial commu- nity structure and physiological indicators of healthy and infecon Eimeria tenella chickens during peak of oocyst shedding. Avian Pathol. [Internet]. 2023; 52(1):51–61. doi: hps://doi.org/n8qd [41] Mukai T, Arihara K, Ikeda A, Nomura K, Suzuki F, Ohori H. Lactobacillus kitasatonis sp. nov., from chicken intesne. Int. J. Syst. Evol. Microbiol. [Internet]. 2003; 53(6):2055- 2059. doi: hps://doi.org/dncmwm [42] Jha R, Das R, Oak S, Mishra P. Probiocs (Direct-fed mic- robials) in poultry nutrion and their effects on nutrient ulizaon, growth and laying performance, and gut health: A systemac review. Animals. [Internet]. 2020; 10(10):1863. doi: hps://doi.org/gk9pmc [43] Lile AS, Younker IT, Schechter MS, Bernardino PN, Mé- heust R, Stemczynski J, Scorza K, Mullowney MW, Sharan D, Waligurski E, Smith R, Ramanswamy R, Leiter W, Mo- ran D, McMillin M, Odenwald MA, Iavarone AT, Sidebot- tom AM, Sundararajan A, Pamer EG, Eren AM, Light SH. Dietary- and host-derived metabolites are used by diver- se gut bacteria for anaerobic respiraon. Nat. Microbiol. [Internet]. 2024; 9(1):55-69. doi: hps://doi.org/gtb925 [44] Nieto JA, Rosés C, Viadel B, Gallego E, Romo-Hualde A, Milagro FI, Barceló A, Virto R, Saldaña G, Luengo E. Sourdough bread enriched with exopolysaccharides and gazpacho by-products modulates in vitro the microbi- ota dysbiosis. Int. J. Biol. Macromol. [Internet]. 2024; 272(Part 1):132906. doi: hps://doi.org/n8qm [45] Khan S, Chousalkar KK. Salmonella Typhimurium infecon disrupts but connuous feeding of Bacillus based probi- oc restores gut microbiota in infected hens. J. Anim. Sci. Biotechnol. [Internet]. 2020; 11:29. doi: hps://doi.org/ gmz8ds [46] Kollarcikova M, Faldynova M, Maasovicova J, Jahodaro- va E, Kubasova T, Seidlerova Z, Babak V, Videnska P, Cizek A, Rychlik I. Different Bacteroides Species Colonise Hu- man and Chicken Intesnal Tract. Microorg. [Internet]. 2020; 8(10):1483. doi: hps://doi.org/n8qn [47] Wei X, Wang YL, Wen BT, Liu SJ, Wang L, Sun L,Gu TY, Li Z, Bao Y, Fan SL, Zhou H, Wang F, Xin F. The α-Helical Cap Domain of a Novel Esterase from Gut Alispes shahii Sha- ping the Substrate-Binding Pocket. J. Agric. Food Chem. [Internet]. 2021; 69(21):6064-6072. doi: hps://doi. org/gjz6z2 6 of 7
Revista Cienfica, FCV-LUZ / Vol. XXXV UNIVERSIDAD DEL ZULIA Serbiluz Sistema de Servicios Bibliotecarios y de Información Biblioteca Digital Repositorio Académico [48] Wen Yuan Y, Pei En C, Sin Jin L, Shih Torng D, Yuan Yu L. Exploring Bile-Acid Changes and Microflora Profiles in Chicken Fay Liver Disease Model. Animals. [Internet]. 2024; 14(7):992. doi: hps://doi.org/n8qp [49] Li, Z., Wang, W., Liu, D, Guo Y. Effects of Lactobacillus aci- dophilus on the growth performance and intesnal he- alth of broilers challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. [Internet]. 2018; 9:25. doi: h- ps://doi.org/n8qq [50] Lokapirnasari WP, Pribadi TB, Arif A Al, Soeharsono S, Hi- danah S, Harijani N, Najwan R, Huda K, Wardhani HCP, Rahman NFN, Yulianto AB. Potency of probiocs Bifi- dobacterium spp. And Lactobacillus casei to improve growth performance and business analysis in organic laying hens. Vet. World. [Internet]. 2019; 12(6):860-867. doi: hps://doi.org/n8qr [51] Wang H, Ni X, Qing X, Zeng D, Luo M, Liu L, Li G, Pan K, Jing B. Live probioc Lactobacillus johnsonii BS15 pro- motes growth performance and lowers fat deposion by improving lipid metabolism, intesnal development, and gut microflora in broilers. Front. Microbiol. [Internet]. 2017; 8:1073. doi: hps://doi.org/gsdnjn [52] Ziyaei K, Hosseini SV. The review of hydrolyzed protein from fishery by-product: Producon methods, applica- on and Biological Properes. J. Food Sci. Technol. [Inter- net]. 2021; 18(111):383-395. doi: hps://doi.org/n8qs 7 of 7