Revista Cienca, FCV-LUZ / Vol. XXXV
1 of 6
Recibido: 18/09/2024 Aceptado:21/11/2024 Publicado: 18/02/2025
hps://doi.org/10.52973/rcfcv-e35518
Received: 12/07/2024 Accepted: 29/10/2024 Published: xx/01/2025 1 of 7
https://doi.org/10.52973/rcfcv-e35488 Revista Cientíca, FCV-LUZ / Vol. XXXV
ABSTRACT
Dimethoate (DMT) pesticide is one of the chemicals used to
protect some agricultural areas from harmful organisms. DMT
residues released directly or indirectly to the environment
cause serious problems in nature. DMT residues mixed with the
aquatic environment adversely affect aquatic organisms and
this effect is carried to humans through the food chain. In this
study, oxidative stress responses induced by DMT pesticide in
Pontastacusleptodactylus were investigated. For this purpose,
oxidative stress and antioxidant parameters Thiobarbituric acid
reactive substances (TBARS), Glutathione (GSH), Superoxide
dismutase (SOD), catalase (CAT) and glutathione peroxidase
(GPX) caused by dimethoate (DMT) pesticide in P. leptodactylus
at 17.5, 35, and 70 mg·L
-1
concentrations at 24 and 96 hours
were investigated. Results were determined using ELISA kits.
No signicant difference was observed in GSH levels and SOD
activities compared to control. Statistically signicant differences
were observed between decreases in CAT and GPx activities and
increases in TBARS levels. SPSS 24.0 package program oneway
ANOVA (Duncan 0.05) was used in the evaluation of biochemical
analyzes. As a result, it was determined that DMT caused oxidative
stress formation in P.leptodactylus and caused changes in enzyme
activities.
Key words: Dimethoate, Pontastacus leptodactylus, oxidative
stress, antioxidant, biomarkers
RESUMEN
El pesticida dimetoato (DMT) es uno de los productos químicos
utilizados para proteger algunas áreas agrícolas de organismos
nocivos. Los residuos de DMT liberados directa o indirectamente
al medio ambiente causan graves problemas en la naturaleza.
Los residuos de DMT mezclados con el medio acuático afectan
negativamente a los organismos acuáticos y este efecto se
transmite a los humanos a través de la cadena alimentaria. En este
estudio, se investigaron las respuestas al estrés oxidativo inducidas
por el pesticida DMT en Pontastacus leptodactylus. Para ello, se
investigaron el estrés oxidativo y los parámetros antioxidantes
Sustancias reactivas al ácido tiobarbitúrico (TBARS), glutatión
(GSH), superóxido dismutasa (SOD), catalasa (CAT) y glutatión
peroxidasa (GPX) causados por el pesticida dimetoato (DMT)
en P. leptodactylus en concentraciones de 17,5; 35 y 70 mg·L
-1
a las 24 y 96 horas. Los resultados se determinaron utilizando
kits de ELISA. No se observaron diferencias signicativas en los
niveles de GSH y las actividades de SOD en comparación con el
control. Se observaron diferencias estadísticamente signicativas
entre disminuciones en las actividades de CAT y GPx y aumentos
en los niveles de TBARS. Se utilizó ANOVA unidireccional del
programa SPSS 24.0 (Duncan 0,05) en la evaluación de los análisis
bioquímicos. Como resultado, se determinó que el DMT provocó
la formación de estrés oxidativo en P. leptodactylus y provocó
cambios en las actividades enzimáticas.
Palabras clave: Dimetoato, Pontastacus leptodactylus, estrés
oxidativo, antioxidante, biomarcadores.
The effect of Dimethoate on oxidative stress and antioxidant responses
of Pontastacus leptodactylus
El efecto del dimetoato sobre el estrés oxidativo y las respuestas
antioxidantes de Pontastacus leptodactylus
Ayşe Nur Aydın1 , Hilal Bulut2* , Osman Serdar3
1Central Fisheries Research Institute, Ministry of Agriculture and Forestry, Republic of Türkiye. Trabzon, Türkiye.
2Firat University, Fisheries Faculty. Elazig, Türkiye.
3Munzur University, Fisheries Faculty. Tunceli, Türkiye.
*Corresponding author: hhaykir@rat.edu.tr
UNIVERSIDAD
DEL ZULIA
Serbiluz
Sistema de Servicios Bibliotecarios y
de Información
Biblioteca Digital
Repositorio Académico
The eect of Terebinth oil on Ezrin and Moesin expression levels in rats with
ovarian ischemia-reperfusion Injury
Efecto del aceite de terebinto sobre los niveles de expresión de ezrina y moesina en
ratas con lesión por isquemia-reperfusión ovárica
Gülsüm Pektanç Şengül1 , Seydi Ahmet Şengül2* , Engin Deveci3
1Technology and Research & Development Center, Hatay Mustafa Kemal University, Hatay, Turkey.
2Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey.
3Department of Histology and Embryology, Medical Faculty, Dicle University, Diyarbakır, Turkey.
*Corresponding author: seydiahmetsengul@mku.edu.tr, tel.: +90-534-8386831
ABSTRACT
The objecve of this study is to examine the expression lev-
els of ezrin and moesin proteins from a molecular and immu-
nohistochemical standpoint following the administraon of
terebinth oil in rats with ovarian ischemia-reperfusion injury.
A total of 32 female Sprague-Dawley rats were ulized in the
study. The rats were randomly assigned to one of four groups,
with eight rats in each group: control, ischemia, I/R, and I/R+-
terebinth oil. Following the inducon of torsion, the treatment
group received 2 ml.kg-1 of terebinth oil orally via gavage once
daily for 28 d. At the conclusion of the experiment, ovarian s-
sues were obtained for immunohistochemical and molecular
analysis. The immunohistochemical evaluaon demonstrated
a posive ezrin expression in epithelial cells within the I/R+-
terebinth oil group, in comparison to the I/R group. Converse-
ly, a negave reacon was observed in the vicinity of blood
vessels. The expression of moesin was observed to be posive
in granulosa cells and stromal areas. Addionally, a notable
decline in the expression levels of ezrin and moesin proteins
was observed in the treatment group in comparison to the
damage group. Moreover, the administraon of terebinth oil
was observed to result in protein expression levels that were
more closely aligned with those observed in the control group.
The present study has demonstrated the impact of terebinth
oil administraon on the expression levels of ezrin and moesin
proteins in a model of ovarian ischemia-reperfusion injury.
Key words: Terebinth oil; ezrin; moesin; ovary; ischemia-reperfusion.
RESUMEN
El objevo de este estudio es examinar los niveles de expresión
de las proteínas ezrina y moesina desde un punto de vista mo-
lecular e inmunohistoquímico tras la administración de aceite
de terebinto en ratas con lesión por isquemia-reperfusión
ovárica. Se ulizaron un total de 32 ratas Sprague-Dawley hem-
bras en el estudio. Las ratas fueron asignadas aleatoriamente
a uno de cuatro grupos, con ocho ratas en cada grupo: control,
isquemia, I/R e I/R+aceite de terebinto. Después de la induc-
ción de la torsión, el grupo de tratamiento recibió 2 ml.kg-1 de
aceite de terebinto por vía oral mediante sonda una vez al día
durante 28 d. Al nalizar el experimento, se obtuvieron tejidos
ováricos para realizar análisis inmunohistoquímicos y molec-
ulares. La evaluación inmunohistoquímica demostró una ex-
presión posiva de ezrina en las células epiteliales dentro del
grupo I/R+aceite de terebinto, en comparación con el grupo
I/R. Por el contrario, se observó una reacción negava en las
proximidades de los vasos sanguíneos. Se obserque la ex-
presión de moesina era posiva en las células de la granulosa
y las áreas del estroma. Además, se obseruna disminución
notable en los niveles de expresión de las proteínas ezrina y
moesina en el grupo de tratamiento en comparación con el
grupo dañado. Además, se observó que la administración de
aceite de terebinto dio como resultado niveles de expresión
de proteínas que estaban más estrechamente alineados con
los observados en el grupo de control. El presente estudio ha
demostrado el impacto de la administración de aceite de tere-
binto en los niveles de expresión de las proteínas ezrina y moe-
sina en un modelo de lesión por isquemia-reperfusión ovárica.
Palabras clave: Aceite de terebinto; ezrin; moesin; ovario; isque-
mia-reperfusión.
Revista Cienca, FCV-LUZ / Vol. XXXV
Received: 12/07/2024 Accepted: 29/10/2024 Published: xx/01/2025 1 of 7
https://doi.org/10.52973/rcfcv-e35488 Revista Cientíca, FCV-LUZ / Vol. XXXV
ABSTRACT
Dimethoate (DMT) pesticide is one of the chemicals used to
protect some agricultural areas from harmful organisms. DMT
residues released directly or indirectly to the environment
cause serious problems in nature. DMT residues mixed with the
aquatic environment adversely affect aquatic organisms and
this effect is carried to humans through the food chain. In this
study, oxidative stress responses induced by DMT pesticide in
Pontastacusleptodactylus were investigated. For this purpose,
oxidative stress and antioxidant parameters Thiobarbituric acid
reactive substances (TBARS), Glutathione (GSH), Superoxide
dismutase (SOD), catalase (CAT) and glutathione peroxidase
(GPX) caused by dimethoate (DMT) pesticide in P. leptodactylus
at 17.5, 35, and 70 mg·L
-1
concentrations at 24 and 96 hours
were investigated. Results were determined using ELISA kits.
No signicant difference was observed in GSH levels and SOD
activities compared to control. Statistically signicant differences
were observed between decreases in CAT and GPx activities and
increases in TBARS levels. SPSS 24.0 package program oneway
ANOVA (Duncan 0.05) was used in the evaluation of biochemical
analyzes. As a result, it was determined that DMT caused oxidative
stress formation in P.leptodactylus and caused changes in enzyme
activities.
Key words: Dimethoate, Pontastacus leptodactylus, oxidative
stress, antioxidant, biomarkers
RESUMEN
El pesticida dimetoato (DMT) es uno de los productos químicos
utilizados para proteger algunas áreas agrícolas de organismos
nocivos. Los residuos de DMT liberados directa o indirectamente
al medio ambiente causan graves problemas en la naturaleza.
Los residuos de DMT mezclados con el medio acuático afectan
negativamente a los organismos acuáticos y este efecto se
transmite a los humanos a través de la cadena alimentaria. En este
estudio, se investigaron las respuestas al estrés oxidativo inducidas
por el pesticida DMT en Pontastacus leptodactylus. Para ello, se
investigaron el estrés oxidativo y los parámetros antioxidantes
Sustancias reactivas al ácido tiobarbitúrico (TBARS), glutatión
(GSH), superóxido dismutasa (SOD), catalasa (CAT) y glutatión
peroxidasa (GPX) causados por el pesticida dimetoato (DMT)
en P. leptodactylus en concentraciones de 17,5; 35 y 70 mg·L
-1
a las 24 y 96 horas. Los resultados se determinaron utilizando
kits de ELISA. No se observaron diferencias signicativas en los
niveles de GSH y las actividades de SOD en comparación con el
control. Se observaron diferencias estadísticamente signicativas
entre disminuciones en las actividades de CAT y GPx y aumentos
en los niveles de TBARS. Se utilizó ANOVA unidireccional del
programa SPSS 24.0 (Duncan 0,05) en la evaluación de los análisis
bioquímicos. Como resultado, se determinó que el DMT provocó
la formación de estrés oxidativo en P. leptodactylus y provocó
cambios en las actividades enzimáticas.
Palabras clave: Dimetoato, Pontastacus leptodactylus, estrés
oxidativo, antioxidante, biomarcadores.
The effect of Dimethoate on oxidative stress and antioxidant responses
of Pontastacus leptodactylus
El efecto del dimetoato sobre el estrés oxidativo y las respuestas
antioxidantes de Pontastacus leptodactylus
Ayşe Nur Aydın1 , Hilal Bulut2* , Osman Serdar3
1Central Fisheries Research Institute, Ministry of Agriculture and Forestry, Republic of Türkiye. Trabzon, Türkiye.
2Firat University, Fisheries Faculty. Elazig, Türkiye.
3Munzur University, Fisheries Faculty. Tunceli, Türkiye.
*Corresponding author: hhaykir@rat.edu.tr
UNIVERSIDAD
DEL ZULIA
Serbiluz
Sistema de Servicios Bibliotecarios y
de Información
Biblioteca Digital
Repositorio Académico
INTRODUCTION
Ovarian torsion, observed in 2.7% of gynecological emer-
gency cases [1], typically aects women of reproducve age but
can occur in females of all age groups. Ovarian torsion results
from a complete or paral twisng of the ovary around its sup-
porng ligaments [2]. The twisng of the ovary around its sup-
porng ligaments causes compression in the vascular system,
leading to ovarian ischemia. The resulng ischemia can lead to
potenal adverse outcomes such as sepsis, peritonis, throm-
bophlebis, adhesions, bleeding, and even death [3]. Due to
the longer length of the right infundibulopelvic ligament, ovar-
ian torsion is more commonly observed on the right side [4]. If
ovarian torsion is not diagnosed early, it can result in reduced
blood ow to the ovary, necrosis, irreversible ssue damage [5],
and decreased follicular reserve [1]. Reperfusion occurs with
the restoraon of blood ow aer ischemia [6] and leads to an
increase in reacve oxygen species, disrupon of cellular integ-
rity, and apoptosis [4]. Ezrin, one of the ezrin-radixin-moesin
(ERM) family proteins, is mainly involved in the protecon of cell
structure by providing cross-linking between the corcal acn
cytoskeleton and the plasma membrane [7,8,9]. In addion, it
plays a role in various cellular processes such as apoptosis, cell
migraon, cell adhesion, invasion, cell molity, metastasis, car-
cinogenesis, intercellular communicaon, and membrane signal
transducon. It mediates signal transducon mechanisms by
providing connecons with membrane molecules to maintain
cell morphology and cell polarity [7 ,8]. Moesin, which is a bind-
ing protein of the submembranous cytoskeleton and is involved
in various physiological processes such as cell molity, develop-
ment, invasion, and dierenaon, is another member of the
ERM protein family [7 ,10 ,11]. Pistacia terebinthus, a member
of the Anacardiaceae family and one of the 20 Pistacia species,
is commonly known as the turpenne tree [12]. Pistacia terebin-
thus is rich in proteins, minerals, fats, dietary bers, carotenoids,
unsaturated fay acids, tocopherols, and phenolic compounds
[13 ,14]. Its high anoxidant, anmicrobial, an-inammatory,
and cytotoxic properes have made it a preferred plant for var-
ious diseases. Terebinth oil has been reported to be eecve in
condions such as cancer, wound healing, and diabetes mellitus
[15 ,16 ,17]. Many medicinal plants are used to prevent com-
plicaons resulng from ischemic damage [18]. However, the
eect of terebinth oil on ovarian torsion is not well understood.
In this study, the acvity of terebinth oil administraon on the
expression levels of ezrin and moesin proteins at the molecular
and immunohistochemical levels in ovarian ischemia-reperfu-
sion injury was invesgated.
MATERIALS AND METHODS
Animals
Experimental procedures were carried out in accordance
with the permission of the Local Ethics Commiee of Animal
Research of Dicle University, number 240638. Thirty-two adult
female Sprague-Dawley rats (Raus norvegicus) (approximately
250-300 g) were divided into four groups, with 8 animals per
group. The rats were housed in temperature-controlled rooms
(21-24°C), with humidity maintained at 40-60% and a light/dark
cycle of 12 h each. They were provided with water and food ad
libitum. In the study, general anesthesia was administered using
xylazine hydrochloride (10 mg.kg-1) (Rompun 2%, Bayer) and ket-
amine hydrochloride (100 mg.kg-1) (Keta-Control, 100 mg.ml-1,
Doğa İlaç). Heart rate and respiratory rates were monitored
during euthanesia.
Experimental protocols
Control group: Animals underwent no procedures were
sacriced under general anesthesia at the end of the experi-
ment and their ovarian ssues were collected.
Ischemia group: The ovarian ssues were exposed under
general anesthesia and ischemia was performed for 2 h.
Ischemia/reperfusion group: The ovarian ssues were ex-
posed under general anesthesia.The ovaries were rst perfomed
given 2 h of ischemia and then 2 h of reperfusion.
I/R+Terebinth oil group: Aer I/R process, 2 ml.kg-1 of tere-
binth oil was administered to the animals via oral gavage for 28
d. Then, the animals were sacriced under general anesthesia
and ovarian ssues were collected.Terebinth oil dose was used
based on the study conducted by Uyar and Abdulrahman [17].
Immunohistochemical analysis for ezrin and moesin
Immunohistochemical analysis was performed to deter-
mine the levels of ezrin and moesin proteins in ovarian ssues.
Ovarian ssue secons, 4-6 μm thick, were incubated at 60°C
(Nüve, EN 500, Turkey) for 6 h. The secons were rst depar-
anized in xylene and then dehydrated through a series of de-
creasing alcohol concentraons. The secons were rst placed
in dislled water and then washed with Phosphate Buered Sa-
line (PBS). For angen retrieval, the secons were transferred to
an Ethylenediaminetetraacec acid soluon and heated in a mi-
crowave oven for 3x6 min. Aer washing with PBS, the secons
were treated with 3% hydrogen peroxide. The secons washed
with PBS incubated with blocking soluon. The secons were
treated with primary anbodies against ezrin and moesin and
incubated overnight at 4°C. Aer another round of PBS wash-
ing, bionylated secondary anbodies were applied and incu-
bated for 14 min, followed by addional washing. Subsequently,
streptavidin-peroxidase was applied for 15 min, and 3,3’diami-
nobenzidine was added to the secons, with color development
observed. The secons washed with PBS counterstained with
Harris hematoxylin. The secons washed with tap water were
claried by passing through an increasing alcohol series and xy-
lene. Microphotographs (Nikon, Y-TV55, Japan) of the secons
covered with coverslips by dropping entellan were taken under
a Zeiss Imager A2 light microscope ( Axio Imager, A2, Germany).
Western blot analysis
Ovarian ssues stored at -80°C (Daihan, Uni Freeze U700,
Korea) were thawed and homogenized in liquid nitrogen. Cold
RIPA buer containing protease-phosphatase inhibitor cock-
tail and nucleases was then added to the samples. The total
cellular protein concentraon of the resulng lysates was de-
termined using a bicinchoninic acid protein assay kit. Proteins
(approximately 20 µg) were separated by 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Bio-Rad,
Mini-Protean Tetra Cell, USA). The separated proteins were
transferred to a polyvinylidene uoride (PVDF) membrane (Bio-
Rad, USA). The membranes were incubated with ezrin and moes-
in anbodies for 2 h at room temperature. β-acn was used as
a loading control. RP-conjugated secondary anbodies specic
to the primary anbodies were used.Proteins were treated with
ECL (LI-COR Biosciences, USA) substrate and visualized using G:-
Box Chemi XRQ (Syngene, USA).
2 of 6
Eect of Terebinth Oil on Ezrin and Moesin proteins expression levels / Şengül et. al.
Received: 12/07/2024 Accepted: 29/10/2024 Published: xx/01/2025 1 of 7
https://doi.org/10.52973/rcfcv-e35488 Revista Cientíca, FCV-LUZ / Vol. XXXV
ABSTRACT
Dimethoate (DMT) pesticide is one of the chemicals used to
protect some agricultural areas from harmful organisms. DMT
residues released directly or indirectly to the environment
cause serious problems in nature. DMT residues mixed with the
aquatic environment adversely affect aquatic organisms and
this effect is carried to humans through the food chain. In this
study, oxidative stress responses induced by DMT pesticide in
Pontastacusleptodactylus were investigated. For this purpose,
oxidative stress and antioxidant parameters Thiobarbituric acid
reactive substances (TBARS), Glutathione (GSH), Superoxide
dismutase (SOD), catalase (CAT) and glutathione peroxidase
(GPX) caused by dimethoate (DMT) pesticide in P. leptodactylus
at 17.5, 35, and 70 mg·L
-1
concentrations at 24 and 96 hours
were investigated. Results were determined using ELISA kits.
No signicant difference was observed in GSH levels and SOD
activities compared to control. Statistically signicant differences
were observed between decreases in CAT and GPx activities and
increases in TBARS levels. SPSS 24.0 package program oneway
ANOVA (Duncan 0.05) was used in the evaluation of biochemical
analyzes. As a result, it was determined that DMT caused oxidative
stress formation in P.leptodactylus and caused changes in enzyme
activities.
Key words: Dimethoate, Pontastacus leptodactylus, oxidative
stress, antioxidant, biomarkers
RESUMEN
El pesticida dimetoato (DMT) es uno de los productos químicos
utilizados para proteger algunas áreas agrícolas de organismos
nocivos. Los residuos de DMT liberados directa o indirectamente
al medio ambiente causan graves problemas en la naturaleza.
Los residuos de DMT mezclados con el medio acuático afectan
negativamente a los organismos acuáticos y este efecto se
transmite a los humanos a través de la cadena alimentaria. En este
estudio, se investigaron las respuestas al estrés oxidativo inducidas
por el pesticida DMT en Pontastacus leptodactylus. Para ello, se
investigaron el estrés oxidativo y los parámetros antioxidantes
Sustancias reactivas al ácido tiobarbitúrico (TBARS), glutatión
(GSH), superóxido dismutasa (SOD), catalasa (CAT) y glutatión
peroxidasa (GPX) causados por el pesticida dimetoato (DMT)
en P. leptodactylus en concentraciones de 17,5; 35 y 70 mg·L
-1
a las 24 y 96 horas. Los resultados se determinaron utilizando
kits de ELISA. No se observaron diferencias signicativas en los
niveles de GSH y las actividades de SOD en comparación con el
control. Se observaron diferencias estadísticamente signicativas
entre disminuciones en las actividades de CAT y GPx y aumentos
en los niveles de TBARS. Se utilizó ANOVA unidireccional del
programa SPSS 24.0 (Duncan 0,05) en la evaluación de los análisis
bioquímicos. Como resultado, se determinó que el DMT provocó
la formación de estrés oxidativo en P. leptodactylus y provocó
cambios en las actividades enzimáticas.
Palabras clave: Dimetoato, Pontastacus leptodactylus, estrés
oxidativo, antioxidante, biomarcadores.
The effect of Dimethoate on oxidative stress and antioxidant responses
of Pontastacus leptodactylus
El efecto del dimetoato sobre el estrés oxidativo y las respuestas
antioxidantes de Pontastacus leptodactylus
Ayşe Nur Aydın1 , Hilal Bulut2* , Osman Serdar3
1Central Fisheries Research Institute, Ministry of Agriculture and Forestry, Republic of Türkiye. Trabzon, Türkiye.
2Firat University, Fisheries Faculty. Elazig, Türkiye.
3Munzur University, Fisheries Faculty. Tunceli, Türkiye.
*Corresponding author: hhaykir@rat.edu.tr
UNIVERSIDAD
DEL ZULIA
Serbiluz
Sistema de Servicios Bibliotecarios y
de Información
Biblioteca Digital
Repositorio Académico
Stascal analysis
Stascal analysis was performed using SPSS® 11.5 (SPSS
Inc.; Chicago, IL, USA). Data with normal distribuon among
mulple groups were analyzed using One Way ANOVA, and post
hoc analysis was conducted using Tukey HSD test. A value of
P<0.05 was considered stascally signicant.
RESULTS AND DISCUSSION
Immunohistochemical results
In the control group, negave ezrin expression was ob-
served in the connecve ssue cells and capsules under the
epithelium, as well as in the granuloza cells. However, a wide-
spread posive ezrin expression was noted in the corpus luteum
cells (FIG. 1A). In the ischemia group, posive ezrin expression
was observed in some cells of the hyperplasc ciliated colum-
nar epithelium and in cells along the developed antral follicle,
aributed to degenerave changes. Conversely, negave ezrin
expression was detected in the endothelial cells of the expand-
ed vessels resulng from ischemia (FIG. 1B). In the I/R group,
posive ezrin expression was seen in most of the epithelial cells
on the luminal surface and in aggregate inammatory cells.
Negave ezrin expression was found around the vessels (FIG.
1C). In the I/R+terebinth oil group, posive ezrin expression was
observed in most cells of the epithelial structure and non-de-
veloping follicles, whereas negave expression was noted in the
underlying connecve ssue and around the vessels (FIG. 1D).
FIGURE 1. Cross secons of ovarian ssues stained with ezrin immunostaining. A. Control
group ovarian secon. g: granulosa cells, cl: corpus luteal cells. B. Ischemia group ovarian
secon, ce: ciliated cylindrical epithelium, af: antral follicle. C. I/R group ovarian secon.
e: epithelial cells, arrow: inammatory cells. D. I/R+terebinth oil group ovarian secon. e:
epithelium, ct: connecve ssue. (Bar: 50 µm, ezrin immunostaining: A-D, magnicaon,
x200)
In the literature on in vitro and in vivo studies related to
ezrin and moesin proteins is limited. High levels of ezrin expres-
sion have been observed in the small and large intesnes and
the stomach, and it can also be expressed in renal proximal tu-
bules and glomeruli [19]. In a study by Louvet et al. [20] ezrin
was rst characterized in mouse embryos. The study revealed
a decrease in ezrin protein levels from the oocyte to the blasto-
cyst stage, with a more pronounced reducon during compac-
on. Addionally, it was noted that ezrin remained associated
with the microvillar pole during the transion from the 8-cell
to the 16-cell stage and was present only in the outer cells aer
division. In another study, it was found that some ezrin mole-
cules in long spermads in postnatal mouse testes bind to cy-
toplasmic acn. Ezrin immunoreacvity was observed in the
cytoplasm of stage 15 and 16 spermads from the h week
aer birth unl adulthood. The immunostaining results suggest-
ed that ezrin expression was only found in the seminiferous tu-
bules and was not detected in the intersal ssue[21]. Baiocchi
et al. [22] invesgated tauroursodeoxycholic acid (TUDCA) in a
rat liver I/R model and found that TUDCA treatment signicantly
increased ezrin protein expression compared to normal rats. In
a study by Sak [23] it was observed that ezrin expression was at
low levels in the syncyotrophoblast cells and cells in the villous
stroma of the placentas of paents with gestaonal diabetes. In
placentas from non-diabec paents, it has been reported that
ezrin expression is posive in both the cytoplasm and cell mem-
branes of maternal decidua, in some nuclei of decidual cells, and
in the syncyotrophoblast cell membranes of the placental vil-
li. In another study, placentas from preeclampc women who
smoked were compared with those who did not smoke. It was
found that in the smoking preeclampsia group, syncyal cells
carrying microvilli showed negave ezrin expression, whereas
in the non-smoking group, syncyal cells at the villus periphery
exhibited negave ezrin expression. Addionally, posive ezrin
expression was observed in Hoauer cells, vascular endothelial
cells, the trophoblast layer of oang villi, and connecve ssue
in large villi in the non-smoking preeclampsia group [24]. Fadiel
et al. [25] indicated in their study on ovarian epithelial cancer
(OVCA) cells that long-term ovarian surface epithelial cell cul-
ture increased ezrin expression and cytological abnormalies.
Addionally, it has been found that epidermal growth factor sig-
nicantly increases the translocaon of ezrin in ovarian surface
epithelial cells in a me-dependent manner. In another study,
excessive ezrin expression was observed in human OVCA cell
lines (Caov-3 and SK-OV-3) compared to human ovarian epithe-
lial cell line (IOSE80) cells [26].
In the control group, slight posive moesin expression
was observed in the epithelial layer, while negave expression
was noted in the medium-sized antral follicle cells (FIG. 2A). In
the ischemia group, the capillaries and sinusoidal-type capillar-
ies in the lower regions were well-developed, and widespread
posive moesin expression was observed in the follicular cells.
Addionally, posive moesin expression was noted in the en-
dothelium of the expanded thromboc vessels (FIG. 2B). In the
I/R group, posive moesin expression was observed in the cells
of the germinal epithelium and some degenerated antral folli-
cle structures in the supercial regions, as well as in the dilated
blood vessels and endothelial cells. However, granulosa cells in
the parenchymal area and cells in the antral follicle exhibited
widespread negave moesin expression (FIG. 2C). In the I/R+-
terebinth oil group, posive moesin expression was observed
in most granulosa cells, vascular endothelia, and stromal areas
within the epithelial structure. However, moesin expression was
negave in the theca folliculi externa region (FIG. 2D).
3 of 6
Revista Cienca, FCV-LUZ / Vol. XXXV
Received: 12/07/2024 Accepted: 29/10/2024 Published: xx/01/2025 1 of 7
https://doi.org/10.52973/rcfcv-e35488 Revista Cientíca, FCV-LUZ / Vol. XXXV
ABSTRACT
Dimethoate (DMT) pesticide is one of the chemicals used to
protect some agricultural areas from harmful organisms. DMT
residues released directly or indirectly to the environment
cause serious problems in nature. DMT residues mixed with the
aquatic environment adversely affect aquatic organisms and
this effect is carried to humans through the food chain. In this
study, oxidative stress responses induced by DMT pesticide in
Pontastacusleptodactylus were investigated. For this purpose,
oxidative stress and antioxidant parameters Thiobarbituric acid
reactive substances (TBARS), Glutathione (GSH), Superoxide
dismutase (SOD), catalase (CAT) and glutathione peroxidase
(GPX) caused by dimethoate (DMT) pesticide in P. leptodactylus
at 17.5, 35, and 70 mg·L
-1
concentrations at 24 and 96 hours
were investigated. Results were determined using ELISA kits.
No signicant difference was observed in GSH levels and SOD
activities compared to control. Statistically signicant differences
were observed between decreases in CAT and GPx activities and
increases in TBARS levels. SPSS 24.0 package program oneway
ANOVA (Duncan 0.05) was used in the evaluation of biochemical
analyzes. As a result, it was determined that DMT caused oxidative
stress formation in P.leptodactylus and caused changes in enzyme
activities.
Key words: Dimethoate, Pontastacus leptodactylus, oxidative
stress, antioxidant, biomarkers
RESUMEN
El pesticida dimetoato (DMT) es uno de los productos químicos
utilizados para proteger algunas áreas agrícolas de organismos
nocivos. Los residuos de DMT liberados directa o indirectamente
al medio ambiente causan graves problemas en la naturaleza.
Los residuos de DMT mezclados con el medio acuático afectan
negativamente a los organismos acuáticos y este efecto se
transmite a los humanos a través de la cadena alimentaria. En este
estudio, se investigaron las respuestas al estrés oxidativo inducidas
por el pesticida DMT en Pontastacus leptodactylus. Para ello, se
investigaron el estrés oxidativo y los parámetros antioxidantes
Sustancias reactivas al ácido tiobarbitúrico (TBARS), glutatión
(GSH), superóxido dismutasa (SOD), catalasa (CAT) y glutatión
peroxidasa (GPX) causados por el pesticida dimetoato (DMT)
en P. leptodactylus en concentraciones de 17,5; 35 y 70 mg·L
-1
a las 24 y 96 horas. Los resultados se determinaron utilizando
kits de ELISA. No se observaron diferencias signicativas en los
niveles de GSH y las actividades de SOD en comparación con el
control. Se observaron diferencias estadísticamente signicativas
entre disminuciones en las actividades de CAT y GPx y aumentos
en los niveles de TBARS. Se utilizó ANOVA unidireccional del
programa SPSS 24.0 (Duncan 0,05) en la evaluación de los análisis
bioquímicos. Como resultado, se determinó que el DMT provocó
la formación de estrés oxidativo en P. leptodactylus y provocó
cambios en las actividades enzimáticas.
Palabras clave: Dimetoato, Pontastacus leptodactylus, estrés
oxidativo, antioxidante, biomarcadores.
The effect of Dimethoate on oxidative stress and antioxidant responses
of Pontastacus leptodactylus
El efecto del dimetoato sobre el estrés oxidativo y las respuestas
antioxidantes de Pontastacus leptodactylus
Ayşe Nur Aydın1 , Hilal Bulut2* , Osman Serdar3
1Central Fisheries Research Institute, Ministry of Agriculture and Forestry, Republic of Türkiye. Trabzon, Türkiye.
2Firat University, Fisheries Faculty. Elazig, Türkiye.
3Munzur University, Fisheries Faculty. Tunceli, Türkiye.
*Corresponding author: hhaykir@rat.edu.tr
UNIVERSIDAD
DEL ZULIA
Serbiluz
Sistema de Servicios Bibliotecarios y
de Información
Biblioteca Digital
Repositorio Académico
FIGURE 2. Cross secons of ovarian ssues stained with moesin immunostaining. A. Con-
trol group ovarian secon. e: epithelium, af: antral follicle cells. B. Ischemia group ovarian
secon. fc: follicular cells, asterisk: thrombosed vascular endothelium. C. I/R group ovar-
ian secon. ge: germinal epithelium, ve: endothelial cells of dilated vessels, g: granulo-
sa cells. D. I/R+terebinth oil group ovarian secon. e: epithelium, g: granulosa cells, ve:
vascular endothelium. (Bar: 50 µm, moesin immunostaining: A-D, magnicaon, x200)
Mulple ssues and organs can express moesin protein. It
has been reported that moesin expression is signicantly high in
endothelial cells, including those in the spleen, kidneys, lungs,
blood vessels, and lymphocytes [19]. In another study, Wakaya-
ma et al. [21] reported that no immunoreacvity for moesin was
detected in the testes of either adult or postnatal mice.
Terebinth oil, which has various biological acvies, is re-
ported to possess anmicrobial, an-inammatory, cytotoxic,
and anoxidant properes due to the richness of secondary
compounds found in its fruits and resins [27]. Addionally, in
tradional Turkish folk medicine, it is known to have anpyret-
ic, diurec, anbacterial, and anviral eects [28]. In the liter-
ature, there are in vitro and in vivo studies that reveal eect of
terebinth oil on dierent ssue injury and organisms. Altunova
[29] demonstrated that the anbacterial acvity of immature
terebinth fruit extract was more eecve against methicillin-re-
sistant Staphylococcus aureus (MRSA) and vancomycin-resis-
tant Enterococcus (VRE) compared to mature terebinth extract.
Erdem et al. [30] indicated that terebinth oil used against liver
damage resulng from mammary cancer induced by 7,12-di-
methylbenz[a]anthracene (DMBA) in rats had a migang eect
on the damage. However, no study has been found showing the
eect of terebinth oil on ovarian ischemia-reperfusion injury
and the expression levels of ezrin and moesin proteins in this
ssue.
Western blot ndings
The expression levels of ezrin and moesin proteins in ovari-
an ssues were determined using the Western Blot method. The
expression levels of ezrin and moesin proteins in ovarian ssues
are presented in FIGS. 3 and 4. It was found that the expression
levels of ezrin and moesin proteins were signicantly higher in
the I/R group compared to the control group (P<0.05). On the
other hand, in the I/R+terebinth oil group, the expression lev-
els of ezrin and moesin proteins were found to be signicantly
lower compared to the I/R group (P<0.05). Addionally, in the
I/R+terebinth oil group, it was determined that the expression
levels of both proteins were close to the levels in the control
group (FIG. 4).
FIGURE 3. Expression levels of ezrin and moesin proteins in ovarian ssues of the control,
ischemia, I/R, and I/R+terebinth oil groups. Quancaon of protein band opcal densi-
es for ezrin, moesin, and ß-acn levels
FIGURE 4. Bars represent the mean±SE of experiments. Levels of ezrin and moesin in ovar-
ian ssues of the control, ischemia, I/R, and I/R+terebinth oil groups. (*P<0.05, when the
ezrin and moesin proteins are compared with control group) (**P<0.05, when the ezrin
and moesin proteins are compared with I/R group)
4 of 6
Eect of Terebinth Oil on Ezrin and Moesin proteins expression levels / Şengül et. al.
Received: 12/07/2024 Accepted: 29/10/2024 Published: xx/01/2025 1 of 7
https://doi.org/10.52973/rcfcv-e35488 Revista Cientíca, FCV-LUZ / Vol. XXXV
ABSTRACT
Dimethoate (DMT) pesticide is one of the chemicals used to
protect some agricultural areas from harmful organisms. DMT
residues released directly or indirectly to the environment
cause serious problems in nature. DMT residues mixed with the
aquatic environment adversely affect aquatic organisms and
this effect is carried to humans through the food chain. In this
study, oxidative stress responses induced by DMT pesticide in
Pontastacusleptodactylus were investigated. For this purpose,
oxidative stress and antioxidant parameters Thiobarbituric acid
reactive substances (TBARS), Glutathione (GSH), Superoxide
dismutase (SOD), catalase (CAT) and glutathione peroxidase
(GPX) caused by dimethoate (DMT) pesticide in P. leptodactylus
at 17.5, 35, and 70 mg·L
-1
concentrations at 24 and 96 hours
were investigated. Results were determined using ELISA kits.
No signicant difference was observed in GSH levels and SOD
activities compared to control. Statistically signicant differences
were observed between decreases in CAT and GPx activities and
increases in TBARS levels. SPSS 24.0 package program oneway
ANOVA (Duncan 0.05) was used in the evaluation of biochemical
analyzes. As a result, it was determined that DMT caused oxidative
stress formation in P.leptodactylus and caused changes in enzyme
activities.
Key words: Dimethoate, Pontastacus leptodactylus, oxidative
stress, antioxidant, biomarkers
RESUMEN
El pesticida dimetoato (DMT) es uno de los productos químicos
utilizados para proteger algunas áreas agrícolas de organismos
nocivos. Los residuos de DMT liberados directa o indirectamente
al medio ambiente causan graves problemas en la naturaleza.
Los residuos de DMT mezclados con el medio acuático afectan
negativamente a los organismos acuáticos y este efecto se
transmite a los humanos a través de la cadena alimentaria. En este
estudio, se investigaron las respuestas al estrés oxidativo inducidas
por el pesticida DMT en Pontastacus leptodactylus. Para ello, se
investigaron el estrés oxidativo y los parámetros antioxidantes
Sustancias reactivas al ácido tiobarbitúrico (TBARS), glutatión
(GSH), superóxido dismutasa (SOD), catalasa (CAT) y glutatión
peroxidasa (GPX) causados por el pesticida dimetoato (DMT)
en P. leptodactylus en concentraciones de 17,5; 35 y 70 mg·L
-1
a las 24 y 96 horas. Los resultados se determinaron utilizando
kits de ELISA. No se observaron diferencias signicativas en los
niveles de GSH y las actividades de SOD en comparación con el
control. Se observaron diferencias estadísticamente signicativas
entre disminuciones en las actividades de CAT y GPx y aumentos
en los niveles de TBARS. Se utilizó ANOVA unidireccional del
programa SPSS 24.0 (Duncan 0,05) en la evaluación de los análisis
bioquímicos. Como resultado, se determinó que el DMT provocó
la formación de estrés oxidativo en P. leptodactylus y provocó
cambios en las actividades enzimáticas.
Palabras clave: Dimetoato, Pontastacus leptodactylus, estrés
oxidativo, antioxidante, biomarcadores.
The effect of Dimethoate on oxidative stress and antioxidant responses
of Pontastacus leptodactylus
El efecto del dimetoato sobre el estrés oxidativo y las respuestas
antioxidantes de Pontastacus leptodactylus
Ayşe Nur Aydın1 , Hilal Bulut2* , Osman Serdar3
1Central Fisheries Research Institute, Ministry of Agriculture and Forestry, Republic of Türkiye. Trabzon, Türkiye.
2Firat University, Fisheries Faculty. Elazig, Türkiye.
3Munzur University, Fisheries Faculty. Tunceli, Türkiye.
*Corresponding author: hhaykir@rat.edu.tr
UNIVERSIDAD
DEL ZULIA
Serbiluz
Sistema de Servicios Bibliotecarios y
de Información
Biblioteca Digital
Repositorio Académico
CONCLUSIONS
The results of the present study suggest that terebinth oil
provides a therapeuc eect by reducing the expression levels
of ezrin and moesin proteins, which are increased in ovarian
ischemia/reperfusion injury. However, further in vivo studies
are needed to evaluate its therapeuc mechanisms and role in
folliculogenesis.
ACKNOWLEDGEMENTS
This work was nancially supported by Scienc Research
Projects Coordinaon of Dicle University (Project number:
TIP.22.034).
Conict of Interest
The authors declare that they have no conicts of interest.
BIBLIOGRAPHIC REFERENCES
[1] Aktaş A, Aşır F, Özdemir Başaran S, Kaplan Ö, Ermiş IS,
Deveci E. Granulocyte colony smulang factor (GCSF)
protected in ovarian ssues against ischemia reperfusion
injury. JDDT. [Internet]. 2022; 12(4):26-30. doi: hps://
doi.org/nh3h
[2] Demir Çaltekin M, Özkut MM, Çaltekin I, Kaymak E, Çakır
M, Kara M, Yalvaç ES. The protecve eect of JZL184
on ovarian ischemia reperfusion injury and ovarian re-
serve in rats. J. Obstet. Gynaecol. Res. [Internet]. 2021;
47(8):2692-2704. doi: hps://doi.org/gj4gtw
[3] Colak S, Gurlek B, Topcu A, Tumkaya L, Mercantepe T,
Yilmaz A. Protecve eects of nebivolol on ovarian isch-
emia–reperfusion injury in rat. J. Obstet. Gynaecol. Res.
[Internet]. 2020; 46(11):2407-2416. doi: hps://doi.org/
nh3j
[4] Kaplan S, Türk A. Eects of vitamin B12 on rat ovary with
ischemia-reperfusion injury. Biotech Histochem. [Inter-
net]. 2022; 97(4):284-289. doi: hps://doi.org/gr8tkf
[5] Güvenç M, Yüksel M, Kutlu T, Etyemez M, Gökçek İ, Cellat
M. Protecve eects of esculen against ovary ischemia–
reperfusion injury model in rats. J Biochem Mol
Toxicol. [Internet]. 2024; 38(1):e23528. doi: hps://doi.
org/nh3k
[6] Grace PA. Ischaemia-reperfusion injury. Br J Surg. [Inter-
net]. 1994; 81(5):637-47. doi: hps://doi.org/cbmzvs
[7] Xie JJ, Zhang FR, Tao LH, Z, Xu XE, Jian-Shen, Xu LY, Li
EM. Expression of Ezrin in Human Embryonic, Fetal, and
Normal Adult Tissues.J Histochem Cytochem. [Internet].
2011; 59(11):1001-1008. doi: hps://doi.org/b6j8hg
[8] Xu WT, Shi LL, Xu J, Qian H, Zhou H, Wang LH. Ezrin ex-
pression in female reproducve ssues: A review of reg-
ulaon and pathophysiological implicaons. Front. cell
dev. biol. [Internet]. 2023; 11:1-9. doi: hps://doi.org/
nr89
[9] Mani O, Carvalho K, Picart C. Model membranes to shed
light on the biochemical and physical properes of ezrin/
radixin/moesin. Biochimie. [Internet]. 2013; 95(1):3-11.
doi: hps://doi.org/f4h26z
[10] Furthmayr H, Lankes W, Amieva M. Moesin, a new cyto-
skeletal protein and constuent of lopodia: Its role in
cellular funcons. Kidney Int. [Internet]. 1992; 41(3):665-
670. doi: hps://doi.org/b56bdb
[11] Amieva MR, Furthmayr H. Subcellular Localizaon of
Moesin in Dynamic Filopodia, Retracon Fibers, and Oth-
er Structures Involved in Substrate Exploraon, Aach-
ment, and Cell-Cell Contacts. Exp. Cell Res. [Internet].
1995; 219(1):180-196. doi: hps://doi.org/cx2926
[12] Tuzlaci E, Aymaz PE. Turkish folk medicinal plants, part
IV: Gonen (Balikesir). Fitoterapia. [Internet]. 2001;
72(4):323-343. doi: hps://doi.org/d77fz8
[13] Hayoğlu İ, İzol G, Gümüş A, Göncü B, Çevik GB. Menen-
gicin şekerleme üreminde kullanım olanakları. J. Agric.
Fac. Harran Univ. [Internet]. 2010 [Cited 24 june 2024];
14(4):57-62. Available in: hps://n9.cl/hbv7a
[14] Özcan M. Characteriscs of fruit and oil of terebinth
(Pistacia terebinthus L) growing wild in Turkey. J. Sci.
Food. Agric. [Internet]. 2004; 84(6):517-520. doi: hps://
doi.org/bc7b
[15] Erısır FE, Kıreccı OA, Yılmaz O, Özsahın AD. Eects of
Pistacia terebinthus L. Subsp. palaesna and Rhus cori-
aria L. Plants on Some Biochemical Parameters of Brain
Tissue of Sprague-Dawley Rats in Experimental Breast
Cancer Model. KSU J. Agric. Nat. [Internet]. 2022;
25(1)33-41. doi: hps://doi.org/nh3m
[16] Şındak N, Akgül MB, Gülaydın A, Karak Z. Eects of
Topical Terebinth Berry Oiland Dierent Experimental
Mixtures on Wound Healing in Japanese Quails (Coturnix
Coturnix Japonica). Van. Vet. J. [Internet]. 2017 [Cited 12
July 2024]; 28(2):69-74. Available in: hps://n9.cl/t0na0
[17] Uyar A, Abdulrahman NT. A histopathological, immuno-
histochemical and biochemical invesgaon of the an-
diabec eects of the Pistacia terebinthus in diabec
rats. Biotech. Histochem. [Internet]. 2020; 95(2):92-104.
doi: hps://doi.org/nh3p
[18] Eser A, Hızlı D, Haltas H, Namuslu M, Kosus A, Kosus N,
Kafalı H. Eects of curcumin on ovarian ischemia-reper-
fusion injury in a rat model. Biomed Rep. [Internet].
2015; 3(6):807-813. doi: hps://doi.org/nh3q
[19] Kawaguchi K, Yoshida S, Hatano R, Asano S. Patho-
physiological Roles of Ezrin/Radixin/Moesin Proteins.
Biol. Pharm. Bull. [Internet]. 2017; 40(4):381–390. doi:
hps://doi.org/f93hxx
[20] Louvet S, Aghion J, Santa-Maria A, Mangeat P, Maro B.
Ezrin Becomes Restricted to Outer Cells Following Asym-
metrical Division in the Preimplantaon Mouse Embryo.
[Internet]. Dev. Biol. 1996;177(2):568-79. doi: hps://
doi.org/cxzhp8
[21] Wakayama T, Nakata H, Kurobo M, Sai Y, Iseki S. Expres-
sion, Localizaon, and Binding Acvity of the Ezrin/Ra-
dixin/Moesin Proteins in the Mouse Tess. J. Histochem.
Cytochem. [Internet]. 2009; 57(4):351-362. doi: hps://
doi.org/dcpqpm
[22] Baiocchi L, Tisone G, Russo MA, Longhi C, Palmieri G,
Volpe A, Almerighi C, Telesca C, Carbone M, To L, De
Leonardis F, Angelico M. TUDCA prevents cholestasis and
canalicular damage induced by ischemia-reperfusion in-
jury in the rat, modulang PKCa–ezrin pathway. Transpl.
Int. [Internet]. 2008; 21(8):792-800. doi: hps://doi.org/
dbps8v
[23] Sak ME. Gestasyonel Diabet Olan ve Olmayan Hastaların
Plasentalarında Ezrin Radixin-Moesin Proteinlerinin İm-
munohistokimya ve Western Blot Yöntemleriyle Expre-
syonlarının Değerlendirilmesi [Doctoral thesis on the In-
5 of 6
Revista Cienca, FCV-LUZ / Vol. XXXV
Received: 12/07/2024 Accepted: 29/10/2024 Published: xx/01/2025 1 of 7
https://doi.org/10.52973/rcfcv-e35488 Revista Cientíca, FCV-LUZ / Vol. XXXV
ABSTRACT
Dimethoate (DMT) pesticide is one of the chemicals used to
protect some agricultural areas from harmful organisms. DMT
residues released directly or indirectly to the environment
cause serious problems in nature. DMT residues mixed with the
aquatic environment adversely affect aquatic organisms and
this effect is carried to humans through the food chain. In this
study, oxidative stress responses induced by DMT pesticide in
Pontastacusleptodactylus were investigated. For this purpose,
oxidative stress and antioxidant parameters Thiobarbituric acid
reactive substances (TBARS), Glutathione (GSH), Superoxide
dismutase (SOD), catalase (CAT) and glutathione peroxidase
(GPX) caused by dimethoate (DMT) pesticide in P. leptodactylus
at 17.5, 35, and 70 mg·L
-1
concentrations at 24 and 96 hours
were investigated. Results were determined using ELISA kits.
No signicant difference was observed in GSH levels and SOD
activities compared to control. Statistically signicant differences
were observed between decreases in CAT and GPx activities and
increases in TBARS levels. SPSS 24.0 package program oneway
ANOVA (Duncan 0.05) was used in the evaluation of biochemical
analyzes. As a result, it was determined that DMT caused oxidative
stress formation in P.leptodactylus and caused changes in enzyme
activities.
Key words: Dimethoate, Pontastacus leptodactylus, oxidative
stress, antioxidant, biomarkers
RESUMEN
El pesticida dimetoato (DMT) es uno de los productos químicos
utilizados para proteger algunas áreas agrícolas de organismos
nocivos. Los residuos de DMT liberados directa o indirectamente
al medio ambiente causan graves problemas en la naturaleza.
Los residuos de DMT mezclados con el medio acuático afectan
negativamente a los organismos acuáticos y este efecto se
transmite a los humanos a través de la cadena alimentaria. En este
estudio, se investigaron las respuestas al estrés oxidativo inducidas
por el pesticida DMT en Pontastacus leptodactylus. Para ello, se
investigaron el estrés oxidativo y los parámetros antioxidantes
Sustancias reactivas al ácido tiobarbitúrico (TBARS), glutatión
(GSH), superóxido dismutasa (SOD), catalasa (CAT) y glutatión
peroxidasa (GPX) causados por el pesticida dimetoato (DMT)
en P. leptodactylus en concentraciones de 17,5; 35 y 70 mg·L
-1
a las 24 y 96 horas. Los resultados se determinaron utilizando
kits de ELISA. No se observaron diferencias signicativas en los
niveles de GSH y las actividades de SOD en comparación con el
control. Se observaron diferencias estadísticamente signicativas
entre disminuciones en las actividades de CAT y GPx y aumentos
en los niveles de TBARS. Se utilizó ANOVA unidireccional del
programa SPSS 24.0 (Duncan 0,05) en la evaluación de los análisis
bioquímicos. Como resultado, se determinó que el DMT provocó
la formación de estrés oxidativo en P. leptodactylus y provocó
cambios en las actividades enzimáticas.
Palabras clave: Dimetoato, Pontastacus leptodactylus, estrés
oxidativo, antioxidante, biomarcadores.
The effect of Dimethoate on oxidative stress and antioxidant responses
of Pontastacus leptodactylus
El efecto del dimetoato sobre el estrés oxidativo y las respuestas
antioxidantes de Pontastacus leptodactylus
Ayşe Nur Aydın1 , Hilal Bulut2* , Osman Serdar3
1Central Fisheries Research Institute, Ministry of Agriculture and Forestry, Republic of Türkiye. Trabzon, Türkiye.
2Firat University, Fisheries Faculty. Elazig, Türkiye.
3Munzur University, Fisheries Faculty. Tunceli, Türkiye.
*Corresponding author: hhaykir@rat.edu.tr
UNIVERSIDAD
DEL ZULIA
Serbiluz
Sistema de Servicios Bibliotecarios y
de Información
Biblioteca Digital
Repositorio Académico
ternet]. Dicle University; 2020 [Cited 18 Sep 2024]. 54 p.
Available in: hps://n9.cl/h8f6wv
[24] Ağaçayak E. Sigara İ çen ve İçmeyen Preeklampk Plasen-
talarda Ezrin-Radixin Moesin Protein Expresyonlarının
İmmünohistokimyasal ve Western Blot Yöntemiyle
Değerlendirilmesi [Doctoral thesis on the Internet]. Dicle
University; 2020 [cited 18 Sep 2024]. 80 p. Available in:
hps://n9.cl/qfedf
[25] Fadiel A, Chen Z, Ulukus E, Ohtani K, Hatami M, Naolin
F. Ezrin Overexpression by Transformed Human Ovarian
Surface Epithelial Cells, Ovarian Cle Cells, and Serous
Ovarian Adenocarcinoma Cells. Reprod. Sci. [Internet].
2012;19(8):797-805. doi: hps://doi.org/f3436h
[26] Li M.J, Xiong D, Huang H, Wen ZY. Ezrin Promotes the
Proliferaon, Migraon, and Invasion of Ovarian Cancer
Cells. Biomed. Environ Sci. [Internet]. 2021; 34(2):139
151. doi: hps://doi.org/nh3w
[27] Topçu G, Ay M, Bilici A, Sarıkürkcü C, Öztürk M, Ulubelen
A. A new avone from anoxidant extracts of Pistacia ter-
ebinthus. Food Chemistry. [Internet]. 2007; 103(3)816–
822. doi: hps://doi.org/cbfc3g
[28] Tastekin D, Tambas M, Kilic K, Erturk K, Arslan D. The
ecacy of Pistacia terebinthus soap in the treatment
of cetuximab-induced skin toxicity. Invest New Drugs.
[Internet]. 2014; 32(6):1295-300. doi: hps://doi.org/
f6qk84
[29] Altunova H. Menengiç (Pistacia terebinthus L.) Meyve
Ekstresinin Mesiline Dirençli Staphylococcus aureus
(MRSA) ve Vankomisine Dirençli Enterococcus (VRE)’a
Karşı Anbakteriyel Akvitesi [Masters thesis on the In-
ternet]. Gaziantep University; 2016 [cited 18 Sep 2024].
60 p.
[30] Ozsahin AD, Erdem Erisir F, Tuzcu Z.. Inuences of Pista-
cia terebinthus L. and Rhus coriaria L. fruits extracts on
the levels of some biochemical parameters in liver ssue
of Experimental Breast Cancer rats. Progr Nutr[Internet].
2021; 23(2): e2021063. doi: hps://doi.org/nh3t
6 of 6