
Comparison of traditional models and articial neural networks in the growth of Capoeta umbla / Ozcan and Serdar___________
8 of 9 9 of 9
[7] Çoban MZ, Gündüz F, Demirol F, Örnekçi, G.N, Karakaya G,
Türkgülü İ, Alp A. Population dynamics and stock assessment
of Capoeta umbla (Heckel, 1843) in Lake Hazar, Elazığ, Turkey.
Turk. J. Fish. Aquat. Sci. [Internet]. 2013 [cited 8 Apr. 2024];
13:221-231. Available in: https://goo.su/U0BC0
[8] Gündüz F, Çoban MZ, Yüksel F, Demirol F, Kurtoğlu M, Yıldız N.
Uzunçayır Baraj Gölü’ndeki (Tunceli) Capoeta trutta (Heckel,
1843)’nın Bazı Populasyon Parametreleri [Some population
parameters of Capoeta umbla (Heckel, 1843) in Uzunçayır Dam
Lake (Tunceli). Yunus Araştirma Bülteni [Internet]. 2014 [cited 24
Jul. 2024]; (2):3-14. Turkish. Available in: https://goo.su/pSUl5
[9] Serdar O, Özcan Eİ. Length-weight and length-length
relationships of Capoeta umbla in Karasu River (East Anatolia,
Turkey). Ege J. Fish. Aquat. Sci. [Internet]. 2016; 33(4):413-
416. doi: https://doi.org/g83k9h
[10] Eroğlu M, Düşükcan M, Çoban MZ. Özlüce Baraj Gölü’nde
Yaşayan Capoeta umbla (Heckel, 1843)’nın Bazı Populasyon
Parametreleri [Some population parameters of Capoeta umbla
(Heckel, 1843) living in Özlüce Dam Lake, Turkey]. KSÜ Tarim
ve Doğa Derg [Internet]. 2018; 21(2):229-238. Turkish. doi:
https://doi.org/g83k9j
[11] Ozcan EI, Serdar O. Evaluation of a new computer method
(ANNs) and traditional methods (LWRs and VBGF) in the
calculation of some growth parameters of two cyprinid species.
Fresenius Environ. Bull. [Internet]. 2019 [cited 10 May 2024];
28(10):7644-7654. Available in: https://goo.su/1rw7I3t
[12] Ozcan EI, Serdar O. Some growth parameters of Capoeta
umbla (Heckel, 1843) population living in the Pülümür River.
Int. J. Pure Appl. Sci. [Internet]. 2021; 7(3):410-418. doi:
https://doi.org/g639f5
[13] Öztemel E. Articial neural networks. In: Ören T, Çölkesen
R, Üner T, editors. Tirkiye Bilişim Ansiklopedisi [Türkiye
Informatics Encyclopedia]. 3
rd
ed. Ankara (Türkiye): Papatya
Bilim Yayınevi; 2012. p. 926-931. Turkish.
[14] Sharda R, Patil RB. Connectionist approach to time series
prediction: an empirical test. J. Intell. Manuf. [Internet]. 1992;
3(5):317-323. doi: https://doi.org/bj7xpg
[15] Kaastra I, Boyd M. Designing a neural network for forecasting
financial and economic time series. Neurocomputing
[Internet]. 1996; 10(3):215-236. doi: https://doi.org/cnrs6d
[16] Türeli Bilen C, Kokcu P, Ibrikci T. Application of articial
neural networks (ANNs) for weight predictions of blue
crabs (Callinectes sapidus RATHBUN, 1896) using predictor
variables. Medit. Marine Sci. [Internet]. 2011; 12(2):439-446.
doi: https://doi.org/gp84sf
[17] Benzer S, Benzer R. New perspectives for predicting growth
properties of craysh (Astacus leptodactylus Eschscholtz,
1823) in Uluabat Lake. Pakistan J. Zool. [Internet]. 2018;
50(1):35-45. doi: https://doi.org/g83k9k
[18] Ozcan EI, Serdar O. Artificial neural networks as new
alternative method to estimating some population parameters
of tigris loach (Oxynoemacheilus tigris (Heckel, 1843)) in
the Karasu River, Turkey. Fresenius Environ. Bull. [Internet].
2018 [cited 10 May 2024]; 27(12B):9840-9850. Available
in: https://goo.su/M7Kipl
[19] Ozcan EI. Artificial neural networks (a new statistical
approach) method in length-weight relationships of Alburnus
mossulensis in Murat River (Palu-Elazığ) Turkey. Applied Eco.
Environ. Res. [Internet]. 2019; 17(5):10253-10266. doi:
https://doi.org/gv7fsv
[20] Benzer S, Benzer R. Growth properties of Pseudorasbora parva
in Süreyyabey reservoir: traditional and articial intelligent
methods. Thalassas [Internet]. 2020; 36:149-156. doi:
https://doi.org/g83k9m
[21] Sangün L, Güney Oİ, Özalp P, Başusta, N. Estimation of body
weight of Sparus aurata with articial neural network (MLP)
and M5P (nonlinear regression)-LR algorithms. Iran J. Fish. Sci.
[Internet]. 2020; 19(2):541-550. doi: https://doi.org/g83k9n
[22] Benzer S, Benzer R. Growth parameters with traditional and
articial neural networks methods of big-scale sand smelt
(Atherina boyeri Risso, 1810). Ege Fish. Aquat. Sci. [Internet].
2023; 40(2):96-102. doi: https://doi.org/g83k9p
[23] Bulut H. Estimation of zooplankton density with articial
neural networks (a new statistical approach) method,
Elazığ-Türkiye. Oceanol. Hydrobiol. Stud. [Internet]. 2023;
52(4):502-515. doi: https://doi.org/g83k9q
[24] Ozcan EI. Performance of artificial neural networks and
traditional methods in determining selected growth parameters
of Alburnus sellal Heckel, 1843. Oceanol. Hydrobiol. Stud.
[Internet]. 2024; 53(2):153-163. doi: https://doi.org/g83k9r
[25] Maravelias CD, Haralabous J, Papaconstantinou C. Predicting
demersal sh species distributions in the Mediterranean Sea
using articial neural networks. Mar. Ecol. Prog. Ser. [Internet].
2003; 255:249-258. doi: https://doi.org/b536w3
[26] Saler S, Haykır H, Baysal N. Zooplankton of Uzunçayir Dam
Lake (Tunceli-Turkey). J. Fish. Sci. [Internet]. 2014; 8(1):1-7.
doi: https://doi.org/g83k9s
[27] Bulut H, Sesli A, Tepe R. Uzunçayır baraj gölü güncel
zooplanktonunun bazı su kalite parametreleri ile
değerlendirilmesi [The assesment of current Zooplankton in
Uzunçayır Dam Lake with some water quality parameters]. Int.
J. Pure Appl. Sci. [Internet]. 2021; 7(3):429-441. Turkish. doi:
https://doi.org/g83k9t
[28] Google Maps. Munzur Irmağı (Türkiye). [Internet]. 2024 [cited
12 Jul. 2024]. Available in: https://goo.su/lGZzm
[29] Lagler KF, Bardach JE, Miller RR, Passino DRM. Ichthyology. 2
nd
ed. New York (NY, USA): John Wiley and Sons; 1991. 528 p.
[30] Zar JH. Biostatistical analysis. 2
nd
ed. Englewood Cliffs (NJ,
USA): Prentice-Hall; 1984. 718 p.
[31] Sparre P, Venema SC. Introduction to tropical sh stock
assessment, Part I: Manual. Rome (Italy): FAO Fisheries
Technical Paper; 1998. 306 p.
[32] Beamish RJ, Fournier DA. A method for comparing the precision
of a set of age determinations. Canadian J. Fish. Aquat. Sci.
[Internet]. 1981; 38(8):982-983. doi: https://doi.org/cpr6np
[33] Munro JL, Pauly D. A simple method for comparing growth of
shes and invertebrates. ICLARM Fishbyte. [Internet]. 1983
[cited 12 Jul. 2024]; 1(1):5-6. Available in: https://goo.su/EXzHh