
128
13th World Bualo Congress ~ 13er Congreso Mundial de Búfalos / Lectures / Sustainability & Socioeconomics _______________________
insemination. Theriogenology 2020; 150:166–172. doi:
https://doi.org/10.1016/j.theriogenology.2020.01.016.
[20] Associazione Nazionale Allevatori Specie Bufalina
(ANASB), 2023. https://www.anasb.it/statistiche/.
[21] Garcia AR, Barros DV, de Oliveira Junior MCM, Barioni
Junior W, da Silva JAR, Lourenço Junior JDB, dos San-
tos Pessoa J. 2020. Innovative use and eciency test of
subcutaneous transponders for electronic identication of
water bualoes. Trop Anim Health Prod. 2020; 52:3725-
3733. doi: https://doi.org/10.1007/s11250-020-02410-7.
[22] Zhang J, Tian GY, Marindra AMJ, Sunny AI, Zhao AB.
A Review of Passive RFID Tag Antenna-Based Sen-
sors and Systems for Structural Health Monitoring
Applications. Sensors. 2017; 17(2):265. doi: https://doi.
org/10.3390/s17020265.
[23] Stewart SC, Rapnicki P, Lewis JR, Perala M. Detection
of low frequency external electronic identication devices
using commercial panel readers. J Dairy Sci. 2007 Sep;
90(9):4478-82. doi: https://doi.org/10.3168/jds.2007-
0033.
[24] Cesarani A, Biani S, Garcia A, Lourenco D, Bertolini G,
Neglia G, Misztal I, Macciotta N. Genomic investigation
of milk production in Italian Bualo. Italian Journal of Ani-
mal Science 2021; 20:539-547. https://doi.org/10.1080/1
828051X.2021.1902404.
[25] Brito LF, Bedere N, Douhard F, Oliveira HR, Arnal M, Pe-
ñagaricano F, Schinckel AP, Baes CF, Miglior F. Review:
Genetic selection of high-yielding dairy cattle toward
sustainable farming systems in a rapidly changing world.
Animal 2021; 15(1):100292. https://doi.org/10.1016/j.ani-
mal.2021.100292.
[26] Bickhart DM, McClure JC, Schnabel RD, Rosen BD,
Medrano JF, Smith TPL. Symposium review: Advances
in sequencing technology herald a new frontier in cattle
genomics and genome-enabled selection. J. Dairy Sci.
2020; 103(6):5278-5290. doi: https://doi.org/10.3168/
jds.2019-17693.
[27] Strandén I, Kantanen J, Lidauer MH, Mehtiö T, Negussie
E. Animal board invited review: Genomic-based impro-
vement of cattle in response to climate change. Animal
2022; 16(12):100673. doi: https://doi.org/10.1016/j.ani-
mal.2022.100673.
[28] Iamartino D, Nicolazzi EL, Van Tassell CP, Reecy JM,
Fritz-Waters ER, Koltes JE, Biani S, Sonstegard TS,
Schroeder SG, Ajmone-Marsan P, Negrini R, Pasquarie-
llo R, Ramelli P, Coletta A, Garcia JF, Ali A, Ramunno
L, Cosenza G, de Oliveira DAA, Drummond MG, Bas-
tianetto E, Davassi A, Pirani A, Brew F, Williams JL. De-
sign and validation of a 90K SNP genotyping assay for
the water bualo (Bubalus bubalis). PLoS One. 2017;
12(10):e0185220. doi: https://doi.org/10.1371/journal.
pone.0185220.
[29] Ravi Kumar D, Nandhini PB, Joel Devadasan M, Siva-
lingam J, Mengistu DW, Verma A, Gupta ID, Niranjan
SK, Kataria RS, Tantia MS. Genome-wide association
study revealed suggestive QTLs for production and re-
production traits in Indian Murrah bualo. 3 Biotech.
2023; 13(3):100. doi: https://doi.org/10.1007/s13205-
023-03505-2.
[30] Silva AA, Brito LF, Silva DA, Lazaro SF, Silveira KR,
Stefani G, Tonhati H. Random regression models using
B-splines functions provide more accurate genomic bree-
ding values for milk yield and lactation persistence in Mu-
rrah bualoes. J. Anim. Breed. Genet. 2023; 140(2):167-
184. doi: https://doi.org/10.1111/jbg.12746.
[31] Lázaro SF, Tonhati H, Oliveira HR, Silva AA, Nascimento
AV, Santos DJA, Stefani G, Brito LF. Genomic studies of
milk-related traits in water bualo (Bubalus bubalis) ba-
sed on single-step genomic best linear unbiased predic-
tion and random regression models. J Dairy Sci. 2021;
104(5):5768-5793. doi: https://doi.org/10.3168/jds.2020-
19534.
[32] Deng T, Liang A, Liang S, Pang C, Ma X, Lu X, Duan A,
Pang C, Hua G, Liu S, Campanile G, Salzano A, Gaspa-
rrini B, Neglia G, Liang X, Yang L. Integrative Analysis of
Transcriptome and GWAS Data to Identify the Hub Ge-
nes Associated with Milk Yield Trait in Bualo. Frontiers
in Genetics 2019; 10:36. doi: https://doi.org/10.3389/fge-
ne.2019.00036.
[33] Li J, Liu S, Li Z, Zhang S, Hua G, Salzano A, Campanile
G, Gasparrini B, Liang A, Yang L. DGAT1 polymorphism
in Riverine bualo, Swamp bualo and crossbred bu-
alo. J Dairy Res. 2018; 85(4):412-415. doi: https://doi.
org/10.1017/S0022029918000468.
[34] Liu JJ, Liang AX, Campanile G, Plastow G, Zhang C,
Wang Z, Salzano A, Gasparrini B, Cassandro M, Yang
LG. Genome-wide association studies to identify quan-
titative trait loci aecting milk production traits in water
bualo. J Dairy Sci. 2018; 101(1):433-444. doi: https://
doi.org/10.3168/jds.2017-13246.
[35] de Araujo Neto FR, Takada L, Dos Santos DJA, Aspil-
cueta-Borquis RR, Cardoso DF, do Nascimento AV, Leão
KM, de Oliveira HN, Tonhati H. Identication of genomic
regions related to age at rst calving and rst calving in-
terval in water bualo using single-step GBLUP. Reprod
Domest Anim. 2020; 55(11):1565-1572. doi: https://doi.
org/10.1111/rda.13811.
[36] de Araujo Neto FR, Dos Santos JCG, da Silva Arce CD,
Borquis RRA, Dos Santos DJA, Guimarães KC, do Nas-
cimento AV, de Oliveira HN, Tonhati H. Genomic study of
the resilience of bualo cows to a negative energy balan-