
________________________________________________________________________Revista Cientica, FCV-LUZ / Vol. XXXII, rcfcv-e32182, 1 - 7
7 de 14
[16] EUN, J; BEAUCHEMIN, K; SCHULZE, H. Use of exogenous
brolytic enzymes to enhance in vitro fermentation of Alfalfa
hay and corn silage. J. Dairy Sci. 90: 1440–1451. 2007b.
[17] FLACHOWSKY, G. Carbon-footprints for food of animal origin,
reduction potentials and research need. J. Appl. Anim. Res.
39(1): 2–14. 2011.
[18] GIRALDO, L; TEJIDO, M; RANILLAAND, M; CARRO, M. Effects on
exogenous brolytic enzymes on in vitroruminal fermentation of
substrates ratios. J. Anim. Feed Technol. 141: 306–325. 2008a.
[19] GIRALDO, L; TEJIDO, M; RANILLAAND, M; CARRO, M. Inuence
of direct-fed brolytic enzymes on diet digestibility and ruminal
activity in sheep fed a grass hay-based diet. J. Anim. Sci. 86:
1617–1623. 2008b.
[20] GOERING, H; VAN SOEST, P. Forage ber analisis (apparatus,
reagents, procedures and some applications). Agric. Handbook.
Nº 379. ARS–USDA. Washington, DC, USA. 20 pp. 1970.
[21] GÓMEZ, A; MENDOZA, G; PINOS, J. Comparison of in vitro degradation
of elephant grass and sugarcane by exogenous brolytic enzymes.
African J. Microbiol. Res. 5 (19): 3051–3053. 2011.
[22] HOLTSHAUSEN, L; CHUNG, Y; GERARDO, H; OBA, M; BEAUCHEMIN,
K. Improved milk production eciency in early lactation dairy
cattle with dietary addition of a developmental brolytic enzyme
additive. J. Dairy Sci. 94: 899–907. 2011.
[23] JALILVAND, G; ODONGO, N; LÓPEZ, S; NASERIA, A; VALIZADEH,
R; EFTEKHAR, F; KEBREAB, E; FRANCE, J. Effects of different
level of an enzyme mixture on in vitro gas production parameter of
contrasting forage. J. Anim. Feed Sci. Technol. 146: 289–301. 2008.
[24] KHATTAB, M; TAWAB, A. In vitro evaluation of palm fronds as
feedstuff on ruminal digestibility and gas production. Acta
Scientif. Anim. Sci. 40: e39586. 2018.
[25] MALIK, R; BANDLA, S. Effect of source and dose of probiotics and
exogenous brolytic enzymes (EFE) on intake, feed eciency
and growth of male buffalo (Bubalus bubalis) calves. Tropic.
Anim. Health Prod. 42(6): 1263–1269. 2010.
[26] MAURICIO, R; MOULD, F; DHANOA, M; OWEN, E; CHANNA, K;
THEODOROU, M. Asemi-automated in vitro gas production
technique for ruminant feedstuff evaluation. Feed Sci. Technol.
79(4): 321–330.1999.
[27] MCALLISTER, T; HRISTOV, A; BEAUCHEMIN, K; RODE, L: CHENG,
K. Enzymes in ruminants diets. In: Bedford, M.R.; Partridge, G.G.
(Eds.). Enzymes in Farm Animal Nutrition. CAB International,
Wiltshire. Pp 273–298. 2001.
[28] MEALE, S; BEAUCHEMIN, K; HRISTOV, A; CHAVES, A; MCALLISTER,
T. Board-Invited review: Opportunities and challenges in using
exogenous enzymes to improve ruminant production. J. Anim.
Sci. 92: 427–442. 2013.
[29] MEDINA, M; TIRADO, G; MEJÍA, I; CAMARILLO, I; CRUZ, C.
Digestibilidad in situ de dietas con harina de nopal deshidratado
conteniendo un preparado de enzimas brolíticas exógenas.
Pesquisa Agrop. Brasil. 41(7): 1173–1177. 2006.
[30] MENDOZA, G; LOERA, O; PLATA, F; HERNÁNDEZ, P; RAMÍREZ,
M. Considerations on the use of exogenous brolytic enzymes to
improve forage utilization. The Scientif. World J. 2014: e247437.
2014.
[31] MORENO, R; PINOS, J; GONZÁLES, S; ÁLVAREZ, G; GARCÍA,
J; MENDOZA, G; BÁRCENA, R. Efecto de enzimas brolíticas
exógenas en la degradación ruminal in vitro de dietas para vacas
lecheras. J. Inter. 32(12) 850–853. 2007.
[32] RAN, T; SALEEM, A; SHEN, Y; RIBEIRO, G; BEAUCHEMIN, K;
TSANG, A; MCALLISTER, T. Effects of a recombinant brolytic
enzyme on fiber digestion, ruminal fermentation, nitrogen
balance, and total tract digestibility of heifers fed a high forage
diet. J. Anim. Sci. 97(8): 3578–3587. 2019.
[33] RIBEIRO, G; BADHAN, A; HUANG, J; BEAUCHEMIN, K; YANG, Z;
WANG, Y; TSANG, A; MCALLISTER, T. New recombinant brolytic
enzymes for improved in vitro ruminal ber degradability of barley
straw. J. Anim. Sci. 96: 3928–3942. 2018. https://doi.org/jb4w.
[34] ROMERO, J; ZARATE, M; QUEIROZ, O; HAN, J; SHIN, J; STAPLES,
C; BROWN, W; ADESOGAN, A. Fibrolytic enzyme and ammonia
application effects on the nutritive value, intake, and digestion
kinetics of bermuda grass hay in beef cattle. J. Anim. Sci. 91:
4345–4356. 2013.
[35] ROMERO, J; ZARATE, M; ADESOGAN, A. Effect of the dose of
exogenous brolytic enzyme preparation on preingestive ber
hydrolysis, ruminal fermentation, and in vitro digestibility of
Bermuda grass haylage. J. Dairy Sci. 98: 406–417. 2015.
[36] STATISTICAL ANALYSIS SYSTEM INSTITUTE (SAS). The SAS
System for Microsoft Windows, release 8.2. SAS. 2001.
[37] SELZER, K; HASSEN, A; AKANMU, A; SALEM, A. Digestibility
and rumen fermentation of a high forage diet pre-treated with
a mixture of cellulase and xylanase enzymes. South Afric. J.
Anim. Sci. 51(3): 399–406. 2021.
[38] SUTTON, J; PHIPPS, R; BEEVER, D; HUMPHRIES, D; HARTNELL, G;
VICINI, J; HARD, D. Effect of method of application of a brolytic
enzyme product on digestive processes and milk production in
Holstein-Friesian cows. J. Dairy Sci. 86: 546–556. 2003.
[39] TANG, S; TAYO, G; TAN, Z; SUN, Z; SHEN, L; SHOW, C; XIAO, C;
REN, G; HAN, X; SHEN, S. Effects of yeast culture and brolytic
enzyme supplementation on in vitro fermentation characteristics
of low-quality cereal straws. J. Anim Sci. 86: 1164–1172. 2008.
[40] TITI, H; TABBAA, M. Efficacy of exogenous cellulase on
digestibility in lambs and growth of dairy calve. J. Livest. Prod.
Sci. J. 87: 207–214. 2004.
[41] VAN SOEST, P; ROBERTSON, J; LEWIS, B. Methods for dietary
ber, neutral detergent ber and non-starch polysaccharides
in relation to animal nutrition. J. Dairy Sci. 74: 3583–3597. 1991.
[42] WANG, Y; SPRATLING, B; ZOBELL, D; WIEDMEIER, R; MCALLISTER,
T. Effect of alkali pretreatment of wheat straw on the ecacy of
exogenous brolytic enzymes. J. Anim. Sci. 82: 198–208. 2004.
[43] WOOD, T; BHAT, K. Methods for measuring cellulase activities.
En: Methods in Enzymology. Academic Press. Pp 87–112. 1988.