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Abstract

Based on the Poincarè-Lindstedt perturbation method, we propose a general analytical
procedure to determine the stability of periodic solutions arising from a Hopf bifurcation in dy-
namical systems. As an application of our method to a physical system, we analyze the stability
of bifurcating periodic orbits in a single mode laser. An analytic expression for the associated
stability coefficient is obtained and the stability regions are characterized in the space of pa-
rameters of this system.

Key words: Hopf bifurcation; limit cycles; nonlinear dynamical systems; single mode
laser.

Estabilidad de órbitas periódicas bifurcantes:
una aplicación a ecuaciones de láser

Resumen

Con base en el método perturbativo de Poincarè-Lindstedt, se propone un procedimiento
analítico general para determinar la estabilidad de soluciones periódicas originadas a partir de
una bifurcación de Hopf en sistemas dinámicos. Como una aplicación de nuestro método a un
sistema físico, analizamos la estabilidad de órbitas periódicas bifurcantes en las ecuaciones del
láser de modo simple. Se obtiene una expresión analítica para el coeficiente de estabilidad, y las
regiones de estabilidad se caracterizan en el espacio de parámetros de este sistema.

Palabras clave: Bifurcación de Hopf, ciclos límites, láser de modo simple; sistemas diná-
micos no lineales.

1.  Introduction

The emergence of oscillations as a pa-
rameter is varied is a phenomenon that oc-
curs widely in non-equilibrium systems in

nature. This phenomenon can very often be
described by a Hopf bifurcation (1). Biologi-
cal, chemical, physical, social and economic
systems possess this property and, as a con-
sequence, they may exhibit self-sustained
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oscillations in the absence of external peri-
odic forces. Some relevant examples are: the
beating of a heart, the periodic firing of neu-
rons, daily rhythms in the human body tem-
perature and hormone secretion, oscillating
chemical reactions, economic cycles, and
dangerous vibrations in bridges and air-
plane wings (2).

In this context, the study of the stabil-
ity of the emerging oscillations is currently
an important problem which carries a long
tradition. Poincarè (3) was the first to study
the stability of periodic orbits or limit cycles.
Hopf (4) investigated the asymptotic stabil-
ity of the bifurcating orbits by using the
Poincarè perturbation method for con-
structing periodic solutions and Floquet
theory of equations (5) with periodic coeffi-
cients. La Salle (6) used the Poincarè-
Bendixon theorem to prove the existence of
a stable limit cycle containing the origin for
the general van der Pol’s equations. Subse-
quent approaches include outgrowths of
earlier works, topological methods such as
the Center Manifold Theorem (7, 8) and fre-
quency methods (9). There are also available
algorithms to compute numerically the sta-
bility of the periodic orbits. The analytical
calculations are usually very involving so
that in most applications the work has been
carried out numerically.

The purpose of this paper is to present
a simple analytical method to determine the
stability of periodic solutions arising from a
Hopf bifurcation. Our procedure is based on
the Poincarè-Lindstedt perturbation
method, which has found specific applica-
tions to several physical systems (10-12).
We consider that this approach is more ap-
pealing and intuitive to physicists. It is pre-
sented in Section 2.

As an application of our procedure to a
physical system, in Section 3 we analyze the
stability of bifurcating time-periodic orbits
in a single mode laser. We have obtained an
analytic expression for the associated sta-
bility coefficient in this case.

In the Conclusions we discuss the pro-
posed method and compare the results of
the single mode laser with the studied facts
of the Lorenz system. Some further applica-
tions and extensions of the method are sug-
gested.

2. Stability of bifurcating
time-periodic orbits

Many phenomena can be modeled in
terms of systems of autonomous differential
equations:

dx

dt
f x x n� ��( , ),� , [2.1]

where � is a parameter (or set of parameters)
on a real interval. Let x s ( )� be a stationary or
fixed point of the system [2.1], i.e.,

� �f x s ( ), )� � � 0 . [2.2]

We wish to delineate the circumstances
under which the steady solution x s ( )� of the
system [2.1] loses its stability to a time-
periodic motion

x t x z ts( ) ( ) ( , )� �� � , [2.3]

where

z t z t( , ) ,
( )

� �
	


 �
� �
�

�


�

�
�2
. [2.4]

and we want to determine the stability con-
ditions for the resulting periodic orbit z t( , )� .
Assuming that the deviations z(t) are small,
we may write

dz t

dt
f x zs

( , )
( , )

�
�� �

� �L z t N t( ) ( , ) ( , )� � � , [2.5]

where the Jacobian matrix L( )� has compo-
nents
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L
f

x
i j nij

i

j xs

( ) , ( , , , )
( )

�
�

�
�

� �1� ; [2.6]

and N t( , )� represents the non-vanishing
non-linear terms. To second order,

N t
f

x x
z zi

j k x

j k

s

( , )
( )

�
�

� �
�

�
1
2

1 . [2.7]

We denote by � �1( ) the eigenvalue cor-
responding to the eigenvector ui of L( )� :

Lu u i ni i i� �� �( ) , ( , , )1� [2.8]

Suppose that a Hopf bifurcation occurs
at � �� 0. The Hopf bifurcation is character-
ized by a change of stability of the stationary
point x s ( )� accompanied by the creation of a
closed trajectory or limit cycle (i.e. periodic
solutions) in the phase space x( )� . There are
several versions of the theorem on the ex-
plicit conditions for such bifurcation to oc-
cur. Here we shall use it in the following form
(1):

a. Suppose that two eigenvalues � �1( ) and
� �2( ) of L are a complex conjugate pair
� �� � � �1 21( ) ( )*� .

b. Assume that for � �� 0, Re � �1 0( )� ; for
� �� 0, Re � �1 0( )� , for � �� 0, Re
� �1 0 0( )� . Im � �1 0 0( )� �� .

c.    Assume that
d

d

Re ( )� �

� �

1

0

0� ; and that

Re � �1 0 0( )� ( , , )j n� 3 � .

d. The there is a closed orbit in a neigh-
borhood of x s ( )� with approximate pe-

riod
2	
�

and growing as � 1 2/ .

Periodic solutions which exist for
� �� 0 are named supercritical and those

occurring for � �� 0 are called subcritical.
After a Hopf bifurcation has taken place one
may ask about the stability of the resulting
periodic orbit. In this Section we propose an

analytical method to show that if the Hopf
bifurcation is supercritical, the closed orbits
are stable under small perturbations and, if
the bifurcations if subcritical, the orbits are
unstable.

Let the two purely imaginary eigenval-
ues of L( )� at the value of the parameter
� �� 0 be

� � � �1 0 21 0( ) ( )*� � i� . [2.9]

We seek periodic solutions of [2.5] by
introducing a scaled time � and a 2	-per-
iodic function y through

� 
 �� ( )t ,

z t y( ) ( , )� � � � ,

y y( , ) ( , )� � � 	 �� �2 ,

� � �� ( ) , [2.10]

such that as � � 0, 
 �( )��, � �� 0, z t( )� 0.

Then we can write equation [2.5] as:

� � � �
 �
� �

��
� � � � � � � �( )

( , )
( ) ( , ) ( ),

y t
L y N� � [2,11]

assuming N of second order.

2.1 Adjoint problem
for the homogeneous equation

Letting � � 0we see that y( , )�0 must sat-
isfy

Jy( , )�0 0� , [2.12]

with

J L� ��
�

�� 0 , [2.13]

where

L L0 0� ( )� . [2.14]
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The solution of [2.12] can be expressed
as

y
L

u( , ) exp� �0 0�
�

�


�

�
�

�
, [2.15]

where u is an eigenvector of L 0 with eigen-
value i�,

L u i u0 � � . [2.16]

Then the solution of [2.12] may be writ-
ten in the form

y e u e ui i( , ) *� � �0 � � � . [2.17]

Define the scalar product in �n as:

a b a bi i
i

n

�
�

� *

0

, [2.18]

and the adjoint matrix of L 0 by

aL b M a b0 0� , [2.19]

then

M Lij ij0 0� * . [2.20]

Consider the eigenvector � of M 0 with
eigenvalue i�:

M i0� �� � , [2.21]

then the adjoint homogeneous equation to
[2.12] is

Iw� 0, [2.22]

where

I L� ��
�

�� 0, [2.23]

whose solution can be expressed as

w e ei i� ��� �� � * . [2.24]

For future use, we define the vectors

� � �

� � �

� �

� �

1 1

2 2

� �

� �� �

e u e

e u e

i i

i i

~

~

*

*
, [2.25]

which satisfy

J I ii i� �� � �0 0 12, ~ ; , . [2.26]

We choose the normalization

u � * �1. [2.27]

Finally, let us introduce a scalar
product for time-dependent 2	-periodic vec-
tors a( )� , b( )� :

( ) ( ) ( )a b a b d� �1
2 0

2

	
� � �

	

. [2.28]

The parameter � will be defined by the
implicit equation

� �� � � �� y( , ) * , [2.29]

and it is related with the amplitude of the
motion.

2.2. Construction of the time-periodic
solution

We look for a solution of [2.11] as a Tay-
lor expansion in �:

y yn

n

( , ) ( , )� � � � ��
�

 

�
0

,


 � � 
( )� �
�

 

�� n
n

n 1

,

� � � �� �
�

 

�0
1

n
n

n

,

� �L L Ln
n n

n

� � � �( ) ( )� �
�

 

�0
1

. [2.30]

Substitution in [2.11] yields ( )n � 0
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�
�

��
� ��

�

�


�

�
� � �L y Jy0 0 0 0( , ) ( , ) , [2.31]

and ( )n �0

Jy n n( , ) ( )� ! �� , [2.32]

where

! � � �n n m n
m

L y m( ) ( ) ( , )� ��
�

 

�
0



� �

��
� �n

ny
eN

( , )
( , )

0 1� � . [2.33]

The function ! �n ( ) depends on � via the
y n( , )� " , with "�n n.

Equation [2.32] is a first-order inhomo-
geneous linear differential equation. Its gen-
eral solution is the sum of the solution of ho-
mogeneous equation JY � 0 and of a par-
ticular solution of the inhomogeneous equa-
tion. The adjoint of the homogeneous equa-
tion is:

I
 �( )� 0, [2.34]

whose 2�-periodic solutions are ~�1 and ~�2,

since I ~�1 0� . Forming the scalar product of
I ~�1 with y n( , )� leads to:

� �0� y n I i( , ) ~� � ,

� �� Jy n i( , )~� � ,

� �� ! � �n i( )~ . [2.35]

To adhere to the standard notation, we
write

� �[ ] ( )~! ! � �n j n j� � 0. [2.36]

Hence to solve equation [2.32], the in-
homogeneous term must verify the solvabil-
ity condition [2.36]. The structure of [2.36]
indicates that only terms of ! �n ( ) propor-
tional to exp( )#i � will contribute to the solv-

ability condition. These secular terms lead
to an aperiodic contribution to y n( , )� propor-
tional to � �2 exp( )#i , (s > 0). The requirement
that such contributions identically vanish is
equivalent to the solvability condition [2.36].

Equations [2.32] can be solved sequen-
tially, providing at each stage with equa-
tions for � n and 
n :

$ % $ %! � 
 & � �n n n n ni N( ) ( )
1 1 1

0�� � � �� ,

[2.37]

where

& �n n m
m

L y m�
'

(
)

*

+
,�

�

 

� ( , )
0 1

, [2.38]

and N n�1( )� denotes nonlinear terms of order
n�1 . Since we want 
n , � n to be real:

- .
 & �n n n nN�� � �Im [ ]1 1 ,

� &n n nNRe Re[ ]�� �1 1 . [2.39]

With these values of 
n and � n , equa-
tion [2.32] may be solved and the solution is
unique up to the solution of the homogene-
ous problem, which we can take always to be
zero. This gives an additional constraint un-
der which equation [2.32] has a unique so-
lution.

We note that forn �1, [ ]N 0 0� , so that:

�1 0� ,
1 0� . [2.40]

Thus the first effects of the non-
linearity on � �( ) and 
 �( ) occur at second or-
der. In fact, it can be proved by induction
that

� 
2 1 2 1 0l l� �� � . [2.41]

It follows from this that � �( ) and 
 �( ) are
even functions and the bifurcation is defi-
nitely subcritical ( )� �� 0 or supercritical
( )� �� 0 .

Scientific Journal from the Experimental Faculty of Sciences,
at La Universidad del Zulia Volume 13 Nº 4, October-December 2005

518 Stability of bifurcating periodic orbits: an application to laser equations



2.3. Stability of the periodic motion

To second order we get � � � �� �0
2

2.

Thus the sign of � 2 determines the critical
character of the bifurcation. In Appendix I,
we show that the application of the Floquet
theory of stability of equations with periodic
terms yields the following result: subcritical
periodic motions ( )� 2 0� are unstable and
supercritical periodic motions ( )� 2 0� are
stable. If � 2 0� , one may need to calculate
� 4.

3. An application:
single mode laser

The single mode homogeneously
broadened ring laser in the rotating wave
approximation and the slowly varying am-
plitude approximation is described by the
following equations (13):

dE

dt
kE kP� �

dP

dt
ED P� �/ /

dD

dt
D EP� � � �/ � / / �|| || ||( )1 , [3.1]

where E and P are the normalized electric
field amplitude and normalized polariza-
tion, respectively. D is the threshold pa-
rameter measuring the population inversion
compared to its critical value ( )Dc �1. K is
the decay rate of the electric field in the cav-
ity (or cavity loss). The polarization decay
rate / is the reciprocal of the coherence time
(or transverse relaxation time). Finally,
� � �( )D D Dc c0 is the normalized pump pa-
rameter, where D0, Dc are the unsaturated
and critical inversion, respectively. / can be
experimentally varied and will be chosen as
the bifurcation parameter. In the above
equations it is assumed that the phase dif-
ferences are kept equal to zero.

It was pointed out by Haken (14) that equa-
tions [3.1] are equivalent to the Lorenz equa-

tions of fluid dynamics. Therefore, as it is
well known for the Lorenz system, a limit cy-
cle solution, chaotic behavior and a strange
attractor are also possible in the single mode
laser.

We proceed to study a Hopf bifurcation
for the laser system [3.1] and to determine
analytically the stability of the resulting pe-
riodic solution according to the method pre-
sented in Section 2.

3.1. Steady states

The system [3.1] has the following sta-
tionary states

C E P D1 0 0 1: , ,� � � �� .

C E P D2 3
2 2 1 1, : ,� � � . [3.2]

The state C1 has the following linear-
ized matrix:

�

� �

�

�

�





�

�

�
�
��

k k 0

1 0

0 0

/ � /

/

( )

||

, [3.3]

with eigenvalues



/ / �

1 2

2 4

2,

( ) ( )
�
� � # � �k k k

, [3.4]


 /3 �� || . [3.5]

For � �0, 
1 2 3 0, , � so that the state C1
is asymptotically stable. For � �0, 
2 3 0, � ,

1 0� and C1 is unstable. We see that since
/ �0, k > 0 and /||�0, the real part of 
1 2 3, ,
never vanishes and no Hopf bifurcation is
possible from C1. States C2 3, are the inter-
esting ones for our purposes. The linearized
matrix at the point (E = P = D = 1) is:

L

k k

�

�

�

� � �

�

�





�

�

�
�
��

0

/ / /

/ � / � /|| || ||

, [3.6]
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and has characteristic polynomial:


 / / 
 / / /� 
3 2� � � � � � �( ) ( )|| ||k k

2 0k// �|| � . [3.7]

(the point (E = P = –1, D = 1) leads to the same
equation).

3.2. Hopf bifurcation

To search for one real root and two pure
imaginary roots let the characteristic poly-
nomial [3.7] be written

( )( )( )
 0 
 0 
 �� � � � 0. [3.8]

where

0 0 0� �1 2i , [3.9]

thus,

� �
 0 � 
 0 0 � 
 0 �3
1

2 2
1

2
2 2 0� � � � � �( ) .

[3.10]

There exist two pure imaginary roots
when 01 0� . The product of the coefficients
of 
2 and 
 equals the constant term. Com-
paring with [3.7] above we get:

( ) ( )|| || || ||k k k� � � � �/ / / / /� // �11 20 2 , [3.11]

so that the bifurcation value is

�
/ / /

/ / /0 �
� � �

� �

( )( )

( )
||

||

k k

k
. [3.12]

For k� �/ /|| ||, and � �� 0, all roots
have a negative real part, i.e., the state (E = P
= D = 1) is asymptotically stable. This state is
unstable if � �� 0, k� �/ /||. Thus in order
to get unstable solutions for the single mode
laser the losses of the polarization and the
inversion (bad cavity limit). In the good cav-
ity case k� �/ /||, the one-mode solution is
always stable.

In order to evaluate "0 �1 0( ), equate coef-
ficients of same powers of 
 in [3.7] and
[3.10]:

� � � � �( )||k / / 0 �2 1

/ / � 0 0 �|| ( )k� � � �
2

12

� �2
2

k// � 0 �|| . [3.13]

Thus

� / / 0�� � � �( )||k 2 1 ,[3.14]

and

/ / /��� // � 30 �|| ||(k k� � �� �2 1
2, [3.15]

so that

�/ / /� / / 0|| ||( )( )k k� � � � � �2 1

� � � � �2 21 1
2k k// � 30 / / 0|| ||( ) . [3.16]

Differentiating with respect to � and re-
calling that0 �1 0 0( )� , we obtain

$ %
d

d

k

k k

0 �

�

// / /

/ / / / / �

1 0

2
02

( ) ( )

( ) ( )

|| ||

|| || ||

�
� �

� � � � �
,

[3.17]

and we see that " �0 �1 0 0( ) if k� �/ /||, and a
Hopf bifurcation takes place at � �� 0.

The frequency � at which the bifurca-
tion occurs is given by 0 0 �2

2 2
0� ( ) (when

0 �1 0 0( )� ):

0 �
// �

� �
2

0
0

0

2
( )

( )
||

�
� k

, [3.18]

then

�2 2 2
� �

�

� �
0

/ /

/ /

k k

k
||

||

( )
. [3.19]
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3.3. Stability of the bifurcating periodic
solution

For simplicity we make / /� || in what
follows. Then

�
/ /

/ /
0

/ /

/0
2 22

2

2

2
�

� �

�
� �

�

�

( )( )

( )
,

( )k k

k

k k

k
� .

[3.20]

The equations for the deviations
z t E P D( ) ( , , )� col 4 4 4 are

dz t

dt
Lz t N t

( )
( ) ( )� � , [3.21]

where L is given in [3.6] and the nonlinear
terms are

N
f

x x
z zi

i

i j E P D

i j�
� � �

1
2

1

�

� �
. [3.22]

We look for a periodic solution in the
form [2.30]. Then we get:

�
�

��
��

�

�


�

�
� �L y0 0 0( , ) , [3.23]

�
�

��
� � ��

�

�


�

�
� � �

�

 

�L y n L y mn m n
m

0
0

( , ) ( ) ( , )

� �

� �

��
�n

y
N

( , )0
, [3.24]

where L L0 0� ( )� . The solution of [3.23] is

y e u e ui i( , ) *� � �0 � � � . [3.25]

where u is the eigenvector of L 0 with eigen-
value i�:

L u i u0 � � . [3.26]

The adjoint matrix M 0 has the eigen-
vector �:

M i0� �� � . [3.27]

A calculation gives

u C
i

k

i k

k
�

� �'

(
)

*

+
,col 1,1+

� � �
,

( )/

/

2

, [3.28]

�
/

�
'

(
)

*

+
,C

i

k

i
col -1,1+

2
1

� �
, , [3.29]

where the constant C has been chosen to en-
sure the orthonormality relations

u u� �� �0 1, * . [3.30]

We get

C
k i k

k
2

2 22

2

2
��

� �

� �

/ /

/�

�

�

( )

( )
. [3.31]

To first order in �, equation [3.24] yields

�
�

��
� � 


� �

��
��

�

�


�

�
� � � �L y L y

y
N0 1 1

01 0
0

( , ) ( , )
( , )

( ).

[3.33]

so that

! � � 

� �

��
�1 1 1

00
0

( ) ( , )
( , )

( )� � �L y
y

N , [3.34]

where

L y yt1

1 1

0

0 0 0

0 0 0

0

0( , ) ( , )�

/� /�

�

� �

�

�





�

�

�
�
�

�

� � � � �
5
6
7

8
9
:

�

�





�
�/

�
/
�� �1 12 2

0

0

1
k

e C k i
k

e C k ii i( ) ( )*� �

�

�
�
�
,

[3.35]



� �

��

 � �

1 1
0y

i e u e ui i( , )
( )*� � � , [3.36]
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where we have used the notation y n1( , )� to
indicate the i-component of the vector y n( , )� .

Then

! � �
/� /� �

1 1
1 2 1 2 22( )~ ( )�� � � �

k
C i k

k
e Ci�

( )2 1
2k i i e i� � �� 
 � , [3.38]

and the solvability condition [ ]!1 1= ( ~ )! �1 1 = 0,

gives

( ~ ) ( )~ ( )! �
	

! � � �
/
�

	

1 1 1 1 1
2

0

21
2

2 0� �� � �� d
k

C i k�

; ��1 0 [3.39]

and
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[3.40]

so that

! �
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1 2
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12 0~ ( )�� � � �
k

k i i�

; �
1 0. [3.41]

Then equation [3.33] for y( , )�1 becomes

�
�

��
� ��

�

�


�

�
� �L y N0 1( , ) ( ) . [3.42]

We need a particular solution for this
equation in order to go to second order. The
form of N( )� suggests

y Fe Ge Hi i( , )� � �1 2 2� � �� . [3.43]

Substitution in [3.42] and comparison
of coefficients leads to

F G F G1 1 2 20 0� � �, , [3.44]
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so that

y Fe F e Hi i( , ) *� � �1 2 2� � �� . [3.47]

At second order, equation [3.24] gives

�
�

��
� � ��

�

�


�

�
� � � �L y L y L y0 2 12 0 1( , ) ( , ) ( , )



� �

��
�2

0y
N

( , )
( )� , [3.48]
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Then
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Inserted in the solvability condition
[ ]!2 1 = ( ~ )! �2 1 = 0, gives
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Substitution of the expressions for F3
and C and taking the real part, we find after
some algebra:
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Equation [3.53] also gives 
2 by taking
its imaginary part. The coeffcient � /2( , )k be-
comes singular at the valuesk� 0, / � 0; but
in this case the single mode laser equations
are trivial.

Figure 1 shows the critical boundary
� /2 0( , )k � of stability in the space of pa-
rameters ( , )k / for the periodic orbit of the la-
ser equations [3.1] undergoing a Hopf bifur-
cation at the value � �� 0. This boundary
separates the region where this periodic or-
bit is unstable � �� /2 0( , )k � from the region

where this orbit is stable � �� /2 0( , )k � on the

parameter plane ( , )k / .

4. Conclusions

The perturbation method of Section 3
for analytically determining the stability of
bifurcating periodic orbits is simple in princi-
ple but may become an arduous task in ac-
tual problems. However the explicit formulas
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for the coefficient of stability � 2 could help to
discover the regions of stable oscillations in
the parameter space and to predict the onset
of instabilities and chaotic behavior.

Numerical work has shown wide re-
gions of instabilities in the Lorenz system
(15, 16). However some intervals of stable
periodic solutions have been found. Thus we
would expect some regions of oscillatory sta-
bility in the single mode laser. The region of
instability � �� /2 0( , )k � predicted by Equa-

tion [3.56] agrees qualitatively with compa-
rable points of the Lorenz systems. The criti-
cal curve � /2 0( , )k � separates the domains
of stable oscillations of the single mode laser
( )� 2 0� from the unstable ones ( )� 2 0� on
the space of parameters ( , )k / .

Mandel and Zeghlache (12) have ob-
tained analytic phase diagrams of the stabil-
ity coefficient of a detuned mode laser by us-

ing a different method of stability analysis.
Lugiato et al. (17) have numerically discov-
ered periodic behavior in a single-mode
mean-field model of optical bistability in a
neighborhood of the upper branch of the
steady state curve. The system of equations
involved in that case are slightly more com-
plicated than [3.1] and it might be valuable
to determine the stability of the oscillations
analytically by using the method proposed
in this article.

The influences of external noise on os-
cillations have been investigated for some
systems (18). One advantage of our analyti-
cal approach is the possibility o conceptual
generalizations, as to include the effect of
external noise on the stability of bifurcating
periodic orbits. A further extension of the
method presented here could use the stabil-
ity analysis of Hopf bifurcations to introduce
a parameter control feedback on periodic or-
bits in dynamical systems (19).
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Appendix I:
Floquet exponents and stability

Let z t( )be a periodic solution of [2.5] ob-
tained according to the procedure given in
Section 2 and form the linearized equations
for perturbations h. We get:

� � � �$ %
 �
�

��
� � � � �( ) ( ) ( ), ( , )

h
L h N z t F� � � . [I.1]

We seek solutions of [I.1] in the form
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Figure 1. Critical boundary� /2 0( , )k � of sta-
bility in the space of parameters ( , )k /
for the bifurcating periodic orbit of
the single mode laser equations [3.1].
This boundary separates the domain
where this periodic orbit is unstable
� �� /2 0( , )k � from the domain where

this orbit is stable� �� /2 0( , )k � on the

parameter plane ( , )k / as indicated.



h e� �<� �=( ) , [I.2]

where < < �� ( ) is the so-called Floquet expo-
nent, and = =( ) ( )� � 	� �2 .

Substitution of [I.2] in [I.1] yields
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=L F . [I.3]

Assume
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Substitution in [I.3] gives
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As in Section 2, we look for a solution in
series
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and require, as in the construction of the pe-
riodic solutions, that

[ ] , [ ] ; ( )/ /0 1 11 0 0� � �n n . [I.7]

To lowest order, substitution of [I.6] in
equation [I.5] and conditions [I.7] lead to

� � �< 
0 0 0 1 0( )ia , [I.8]

so that < 0 0� and therefore / 0 �h. At first
order, and using the solvability conditions
[I.7] in this case gives <1 0� . At second or-
der, substitution of [I.6] in equation [I.5]
gives



�

��
/ < 


�

��0 0 2 2 0 0�
�

�


�

�
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�

�


�

�
��L a

h
h



�
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�2 2

h
F� ( , ). [I.9]

Conditions [I.7] give

$ %� � � � �< 
 
 �2 0 0 2 11 2 0( ) ( , )ia i F . [I.10]

Taking real and imaginary parts and
using [2.37] and [2.38] we get

<
� &


2
2 2

0

2
��

Re
. [I.11]

Thus to second order, the Floquet expo-
nent is

< < �< � < � <� � � �0 1
2

2
2

2. [I.12]

Recall from [I.2] that solutions of the
linearized equation [I.1] decay when < �0
and that Re &2 0� from [2.38]. Thus we con-
clude that subcritical periodic motions
( )� 2 0� are unstable ( )< 2 0� and supercriti-
cal periodic motions are stable ( )< 2 0� in the
linearized theory.
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