© The Authors, 2025, Published by the Universidad del Zulia*Corresponding author:gerardo.pamanes@gmail.com
Keywords:
Gas production kinetics
Nutritional quality
Ruminal fermentation
Methane production and nutritional content from the diet consumed by grazing cattle
Producción de metano y contenido nutricional de la dieta consumida por ganado bovino en pastoreo
Produção de metano e conteúdo nutricional a partir da dieta consumida por bovinos pastando em
pastagem
Elizabeth Yazmin García Piña
1
Esperanza Herrera Torres
2
Manuel Murillo Ortíz
3
Rafael Jiménez Ocampo
4
Daniel Sierra Franco
3
Gerardo Antonio Pámanes Carrasco
5
*
Rev. Fac. Agron. (LUZ). 2025, 42(1): e254203
ISSN 2477-9407
DOI: https://doi.org/10.47280/ RevFacAgron(LUZ).v42.n1.III
Animal production
Associate editor: Professor Juan V
ergara-López
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
CONAHCYT. Universidad Juárez del Estado de Durango,
Programa Institucional de Doctorado en Ciencias
Agropecuarias y Forestales, Río Papaloapan y Boulevard
Durango. Col. Valle del Sur. C.P. 34120, Durango, Dgo.,
Mexico.
2
Instituto Tecnológico del Valle de Guadiana, México km
45, 34323, Villa Montemorelos, Dgo., Mexico.
3
Universidad Juárez del Estado de Durango, Facultad de
Veterinaria y Zootecnia, Mezquital km 11.5, Durango, Dgo.,
Mexico.
4
Instituto Nacional de Investigaciones Forestales, Agrícolas y
Pecuarias-INIFAP, Campo Experimental Valle del Guadiana,
Kilómetro 4.5 Carretera Durango-El Mezquital, Durango,
Dgo. C.P. 34170, Mexico.
5
CONAHCYT. Universidad Juárez del Estado de Durango,
Instituto de Silvicultura e Industrias de la Madera, Del
Guadiana 501, SAHR, C.P. 34104 Durango, Dgo., Mexico.
Received: 25-10-2024
Accepted: 11-11-2024
Published: 21-12-2024
Abstract
It is a high priority to account for methane emissions from cattle
grazing grasslands in order to evaluate the strategies for mitigating
GHG emissions in livestock. The aim of this study was to evaluate
in vitro ruminal methane production and nutritional content of the
consumed diet by bovines grazing an open medium grassland in
atypical dry and rainy periods in the semi-arid region of the state of
Durango, Mexico. Four rumen stulated bovines were subjected of an
ad libitum graze under a repeated measure design. Chemical analysis
showed that DM, OM, NDF and ADF increased in rainy period
(p<0.05). Otherwise, CP, EE, phosphorus contains and IVDMD
increased in dry period (p<0.05). Ruminal fermentation parameters
as pH and volatile fatty acids as acetic, propionic and butyric, showed
no changes among periods (p>0.05). However, ammonia increased
in rainy period (p<0.05). Moreover, gas production kinetics only
showed dierences in lag phase (p<0.05); whereas, maximum gas
production and production constant rate showed no changes among
periods (p>0.05). Likewise, methane production showed no changes
among both periods (p<0.05). As conclusion, it is observed that
nutritional quality of the consumed diet by bovines grazing and open
medium grasslands in dry and rainy periods presents acceptable
protein values (8-10 %). In addition, phosphorus contents are higher
than the minimum requirements for growing bovines. Furthermore,
methane production was not aected by dry and rainy periods.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(1): e254203 January-March. ISSN 2477-9407.
2-5 |
Resumen
Es prioritario contabilizar las emisiones de metano de ganado en
libre pastoreo para evaluar de manera puntual las estrategias en la
mitigación de GEI en sistemas pecuarios. El objetivo de este estudio
fue evaluar la producción de metano ruminal in vitro y contenido
nutricional de la dieta consumida por bovinos en pastoreo en un
pastizal mediano abierto en épocas atípicas de secas y de lluvias en
la región semiárida del estado de Durango, México. Se utilizaron 4
bovinos stulados de rumen que fueron sujetos a pastorear un pastizal
mediano abierto bajo un diseño experimental de mediciones repetidas
en el tiempo donde el periodo de la época fue incluido como un efecto
de repetición. La MS, MO, FDN y FDA se incrementaron en época
de lluvias (p<0,05). Por el contrario, en época seca se incrementó
la PC, EE, P y IVDMD (p<0,05). Por su parte, el pH, los ácidos
grasos volátiles y la producción de metano no cambiaron entre
épocas (p>0,05). No obstante, el N-NH
3
aumentó en época de lluvias.
Además, la cinética de producción de gas sólo mostró cambios en la
fase de latencia (p<0,05), más no en la producción máxima de gas
ni la tasa constante de producción (p>0,05). La calidad nutricional
de la dieta consumida por ganado en pastoreo en época seca y
lluvias presenta valores de proteína aceptables (8-10 %). Además,
los contenidos de fósforo sobrepasan los requerimientos necesarios
para bovinos de carne en crecimiento. Por su parte, la producción de
metano no se afectó por las épocas evaluadas.
Palabras clave: calidad nutricional, cinética de producción de gas,
fermentación ruminal
Resumo
É de alta prioridade contabilizar as emissões de metano
provenientes de bovinos em pastagens livres para avaliar as estratégias
de mitigação das emissões de gases de efeito estufa (GEE) em sistemas
pecuários. O objetivo deste estudo foi avaliar a produção de metano e
conteúdo nutricional a partir da dieta consumida por bovinos em uma
pastagem aberta de gramíneas médias, em períodos atípicos de seca
e chuva na região semiárida do estado de Durango, Mexico. Foram
utilizados quatro bovinos stulados no rúmen, submetidos ao pastejo
em uma pastagem aberta de gramíneas médias, em um delineamento
experimental de medições repetidas ao longo do tempo, no qual o
período da estação foi considerado como um efeito de repetição. Os
teores de MS, MO, FDN e FDA aumentaram no período chuvoso
(p<0,05). Por outro lado, no período de seca, houve aumento nos
teores de PB, EE, P e IVDMD (p<0,05). Os parâmetros de fermentação
ruminal como opH, os ácidos graxos voláteis e a produção de metano
não apresentaram alterações signicativas entre os períodos (p>0,05).
Entretanto, o N-NH
3
aumentou durante o período chuvoso. Ademais,
a cinética de produção de gases apresentou diferenças apenas na fase
de latência (p<0,05), enquanto a produção máxima de gás e a taxa
constante de produção não mostraram alterações entre os períodos
(p>0,05). A qualidade nutricional da dieta consumida pelo gado em
pastagem livre, tanto na estação seca quanto na chuvosa, apresentou
teores de proteína aceitáveis (8-10 %). Além disso, os níveis de
fósforo estão acima dos requisitos necessários para bovinos de
corte em crescimento. Por sua vez, a produção de metano não foi
inuenciada pelas variações sazonais entre seca e chuva.
Palavras-chave: qualidade nutricional, cinética de produção de gás,
fermentação ruminal.
Introduction
Livestock farming in Mexico is one of the main economic
activities, developed in an area of 108.9 million ha, in which 32.6
million head of cattle and 12 million head of sheeps and goats,
respectively, are found (Enriquez-Quiroz et al., 2021). In the state of
Durango, rangelands account for 70 % of the forage supply for
livestock grazing in these areas, mainly cattle (INEGI, 2023; SIAP,
2023). Extensive livestock farming is a major emitter of
anthropogenic methane (CH
4
); methane has a calorific value up to 23
times higher than CO
2
(Sánchez et al., 2021). Furthermore, ruminal
enteric CH
4
production is the main cause of the high carbon footprint
of ruminants. Livestock-related CH
4
production alone contributes 14
% of non-CO
2
emissions in this sector (Sandoval-Pelcastre et al.,
2020). Hence the importance of estimating CH
4
emissions in this
production system. In Mexico, there are few studies that determine
the production of enteric methane in extensive systems, so they have
to be estimated according to the methodology proposed by the IPCC
based on general equations, without taking into account the breed,
sex, age or physiological stage of the animals, much less the type of
pasture where it is produced, and above all the diet selected by the
grazing cattle.
There are some results in which it has been found that those
animals with lower dry matter intake are due to poor nutritional quality,
and therefore, higher methane emissions (Rao et al., 2015). Another
factor that causes a decrease in nutritional quality and availability of
forage is low rainfall (Olivera-Castro et al., 2022; Rodríguez et al.,
2019); this increases the cellulose fraction, which causes ruminants
to have increased enteric methane production (Palangi et al., 2019;
Nampoothiri et al., 2018). In addition, 2023 was an atypical year with
low rainfall in northern Mexico. Other studies have shown that there
are seasonal variations in pasture nutritional quality, which may lead
to an increase in ruminal enteric methane production (Reyes-Estrada
et al., 2014); however, information regarding methane production
in extensive systems is very limited due to the complexity of the
methodologies.
The objective was to evaluate the rumen methane production and
nutritional characteristics of the diet consumed by grazing cattle in a
medium open pasture during the dry and rainy season.
Materials and Methods
Description and botanical composition of the study area
The study was conducted in a medium open grassland located at
24°19’22.20 N, -104°45’57 W belonging to the area of Malpais de la
Breña, Durango, with a mean temperature of 22.9 °C and an average
rainfall of 8.56 mm for the dry season (April - June 2023) and a mean
temperature of 24.1 °C and an average rainfall of 59.56 mm for the
rainy season (August - October, 2023) (SMN, 2024). The pasture
has an area of 194 ha, which is divided into paddocks; the present
experiment was carried out in
a 33 ha paddock. The predominant
species are grasses: navajita grass (Bouteloa gracilis), pata de gallo
(Chloris submutica), liendrilla (Muhlenbergia rigida), Rhodes grass
(Chloris gayana) and shrubs: mesquite (Prosopis julifora) and
huizache (Acacia tortuosa).
Experimental cattle, periods and sample collection
Four rumen stulated Criollo cattle weighing 682 ± 10 kg (BW)
were used under continuous grazing in the pasture described above.
Samples of the diet consumed by the cattle were obtained at the
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
García et al. Rev. Fac. Agron. (LUZ). 2025, 42(1): e254203
3-5 |
beginning and end of the dry season (April to June), as well as at
the beginning and end of the rainy season (August to October). The
sampling and sample collection periods were 15 d, of which the rst
10 days were for saturation with chromium sesquioxide as a marker.
From day 11, faecal samples were collected rectally until day 15
(Reyes-Estrada et al., 2014). Finally, on day 15, the rumen contents
were emptied and immediately afterwards a 10 mL aliquot was
taken to evaluate rumen fermentation parameters, such as ammonia
nitrogen (N-NH
3
) and volatile fatty acids (VFA) (Galyean, 2010); in
addition, the pH of the rumen uid per animal was measured with
a potentiometer (model HI 83142, Hanna Instruments, Granjas,
Mexico). Once this phase was completed, and with the rumen empty,
the cattle were left to graze for one hour, and then samples of the diet
consumed were taken (Reyes-Estrada et al., 2014). Once the samples
were obtained, they were dried in a forced air oven at 55 °C for 72 h
(Arthur H. Thomas, Philadelphia, PA, USA) for subsequent analysis
of nutritional quality and gas and methane production.
Chemical analysis of the consumed diet
Samples of the diet consumed by cattle at each time of the
year were dried and ground to determine dry matter (DM), ash,
crude protein (CP) and ether extract (EE) contents (AOAC, 2019).
Similarly, neutral detergent bre (NDF), acid detergent bre (ADF)
and lignin according to standardised methodology (Van Soest et al.,
1991). In vitro dry matter digestibility was determined by obtaining
rumen inoculum from two stulated rumen stulated Criollo cattle
weighing 682 ± 10 kg (BW) and mixed in a 1:2 ratio with buer
solutions. Subsequently, ANKOM F57 bags (Ankom Technology,
Macedon, NY, USA) containing 1 g sample of the consumed diet
were immersed in jars of the Daysi II incubator ANKOM DAISYII
Incubator, NY, USA) for 48 h (ANKOM, 2005).
In vitro gas production kinetics
The number of replicates for each variable was sixteen and
Statistical analysis
Data obtained from proximal chemical analysis as well as ruminal
fermentation parameters were analysed with a repeated measures
experimental design over time using the MIXED procedure of SAS
(2015), where the period of the season was included as an eect of
repetition. Results are expressed as least square means. The number
of replicates for each variable was sixteen. For the variables of the
in vitro gas production kinetics parameters, as well as methane and
carbon dioxide production, they were analysed under a completely
randomised design using the GLM procedure of SAS (2015).
The number of replicates for each variable was eight. Signicant
dierences were declared under Tukey’s mean comparison test, with
a signicance value of p<0.05.
Results and discussion
Table 1 shows the proximate chemical analysis of the diet
consumed by grazing cattle. It is observed that DM and OM increased
by 35 and 3 % in the rainy period with respect to the dry period,
respectively (p<0.05). In the same way, NDF and FDA increased 7
and 11 % during the rainy season with respect to the drought season,
respectively (p<0.05). On the other hand, CP, EE, phosphorus
and IVDMD decreased in the rainy season by 13, 50, 42 and 5 %,
respectively (p<0.05). These results are caused by the irregular
rainfall during 2023, which caused a decrease in the quality of the
pasture. According to CONAGUA (2024), only 332.7 mm of rainfall
was recorded in Durango, and there are even sources that report less
water volume (SMN, 2024). These values are lower than the average
for the state of Durango, which is 550 mm per year. The decrease in
pasture quality is attributed to water scarcity, which causes an increase
in the brous fraction of the forage and compromises regrowth. In
fact, the phenology of the grassland itself aects the nutritive value,
as it decreases as the grassland ages; as the leaves mature, they tend
to become smaller or fall o, while the stem increases in thickness,
which increases structural carbohydrates. Thus, an increase in
the fraction of cellulose and hemicellulose from NDF and FDA is
expected. On the other hand, neither lignin nor CNF changed between
seasons (p>0.05), suggesting that the decrease in IVDMD was not
due to increases in lignocellulosic compounds, but to an increase in
the brous fraction of the diet consumed.
Table 1. Least square means of the chemical composition of the
diet consumed by grazing cattle in a medium open
pasture during two seasons of the year.
Parameter (% DM) Dry Rainy SEDM
DM 51.824
b
70.374
a
1.944
OM 79.416
b
82.572
a
0.757
CP 10.603
a
9.198
b
0.159
EE 1.304
a
0.646
b
0.114
FND 67.510
b
72.727
a
0.752
FAD 42.798
b
47.648
a
1.818
Lignin 8.488
a
7.644
a
0.661
NFC 6.685
a
7.140
a
0.781
Phosphorus 0.407
a
0.271
b
0.020
IVDMD 63.694
a
60.055
b
0.759
ab
Literals in the same row indicate signicant dierences (p<0.05); DM=Dry
Matter; OM=Organic Matter, CP=Crude Protein, EE=Ether Extract, NDF=Neutral
Detergent Fibre, ADF=Acid Detergent Fibre, NFC= Non-bre carbohydrates,
IVDMD=In vitro dry matter digestibility, SEDM= Standard error of the dierence
between means.
In fact, Dong et al. (2021) observed that when the NDF:NFC
ratio was increased, IVDMD was reduced. In this study, NFC was
not aected, but NDF was increased, so the results are consistent
approximately, 1 g sample of the diet consumed by cattle was placed
in modules equipped with a pressure transducer (ANKOM, RF Gas
production system, Macedon, NY,
USA) and left to ferment with
rumen inoculum for 0, 3, 6, 9, 12, 24, 36, 48, 72 and 96 h (Teodorou
et al., 1994). The data obtained from the gas production kinetics were
tted with the France model (France et al., 2000) according to the
following equation proposed by Elghandour et al. (2013):
= ( 1
−
(
l
)
)
Where: A= gas volume (mL) at incubation time t (h), b=
the asymptote of gas production (mL.g
-1
DM), c= gas production
rate (h
-1
), l= lag phase (h).
Methane and CO
2
production in vitro
To evaluate methane (CH
4
) and carbon dioxide (CO
2
) production,
the 8 replicates of the consumed diet were fermented by placing 1
g sample of the consumed diet in modules equipped with pressure
transducer (ANKOM, RF Gas production system, Macedon, NY,
USA) for 24 h and using a gas analyser (GEM5000, Landetc, MI,
USA) the proportion of methane and carbon dioxide in the headspace
was measured and multiplied by the gas production at 24 h according
to the proposed literature (González-Arreola et al. , 2019).
1
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(1): e254203 January-March. ISSN 2477-9407.
4-5 |
with those reported above. In conjunction, previous studies have
found high nutritional values in the rainy season with grazing
animals during the dry and rainy season (Reyes-Estrada et al., 2014);
consequently, the values presented by these authors are comparable
with those found in this study (10, 64 and 67 % CP, NDF and IVDMD,
respectively). The concentrations shown in the present study exceed
the amounts recommended by NRC (2010). This manual indicates
that the recommended amounts of phosphorus should be between
0.10 and 0.20 % (DM) of the diet. As has been shown, even in the
rainy season, this requirement is met. In fact, in the dry season the
minimum amount required is doubled (0.40 % DM). The presence of
phosphorus in a ruminant diet is of utmost importance. Phosphorus
reductions between seasons may be due to the fact that water-stressed
plants in pastures redistribute nutrients to the stem, roots and soil in a
protective manner; this eect also causes a mobilisation of minerals to
the root (Van Soest et al., 1991, Romero et al., 2020). A deciency of
phosphorus in the diet can be reected in reduced appetite in animals
(Crespo et al., 2015).
Table 2 shows the rumen fermentation parameters of cattle grazing
on pasture. As can be seen, pH and volatile fatty acids were equal
between seasons (p>0.05). Low forage diets have been reported to
stimulate changes in butyrate to acetate synthesis (Espinoza-Velasco,
Ramírez-Mella and Sánchez-Villareal, 2018); no such changes were
found in the present study because the diet consumed was high in
bre. Likewise, no changes were found in propionate ratio or A:P
ratio, parameters indicative of better energy utilisation by cattle.
However, according to previous studies, the value found in the A:P
ratio is adequate because it is close to 2 (Holguín et al., 2020).
Table 2. Least square means of rumen fermentation parameters
of the diet consumed by grazing cattle in a medium open
pasture during two seasons of the year.
Parameter Dry Rainy SEDM
pH 6.812
a
6.850
a
0.044
N-NH
3
(mg.dL
-1
) 4.639
b
5.309
a
0.196
Acetate (%) 46.715
a
46.467
a
1.785
Propionate (%) 34.821
a
34.984
a
1.150
Butirate (%) 13.216
a
13.287
a
0.462
Isobutyric (%) 1.536
a
1.538
a
0.103
Valeric (%) 2.368
a
2.372
a
0.105
Isovaleric (%) 1.327
a
1.350
a
0.070
A:P ratio 1.357
a
1.328
a
0.073
ab
Dierent literals in the same row indicate signicant dierences (p<0.05), N-NH
3
=
Ammonia nitrogen, TVFA=total volatile fatty acids, A:P=acetate:propionate ratio;
SEDM=standard error of the dierence between means.
On the other hand, the pH is in the optimal range for proper
fermentation and adequate growth of cellulolytic bacteria (Zhang
et al., 2017). The N-NH
3
content increased by 14 % in the rainy
season compared to the dry season (p<0.05). Ammonia nitrogen
is the preferred N source of cellulolytic bacteria. According to
previous studies by Hackmann et al. (2015), increases in the bacterial
population are positively correlated with an increase in the passage
rate. Furthermore, ruminants can adapt to high-bre feeds through
changes in their microbial population (Espinoza-Velasco et al.,
2018). Thus, it is suggested that the higher the amount of ammonia
nitrogen, the higher the amount of cellulolytic bacteria. This assertion
makes sense when an increase in the bre fraction (cellulose and
hemicellulose) in the diet consumed during the rainy season is
observed. Thus, the rumen is prepared for more bre degradation in
the rainy season than in the dry season. However, IVDMD decreased
in the rainy season. In addition, some authors indicate that the
recommended minimum concentration of ammonia nitrogen in the
rumen for optimal microbial protein synthesis is between 5 and 10
mg.dL (Ramos-Juárez et al., 2021).
Table 3 shows the data for the parameters of gas production
kinetics. Gas production kinetics can be directly correlated with the
digestive processes of ruminants by tting mathematical models
(Murillo et al., 2020); these models expose parameters that have a
justication for the biological processes taking place in the rumen.
Table 3. Kinetics of gas, carbon dioxide and methane production
in vitro from diet consumed by grazing cattle in a
medium open pasture during two seasons of the year.
Parameter Dry Rainy SEDM
c (h
-1
) 0.023
a
0.025
a
0.0008
l (h) 0.186
b
1.063
a
0.027
b (mL.g
-1
DM)
242.350
a
217.500
a
2.504
CO
2
(mL.g
-1
DM)
71.144
a
67.65
a
6.296
CH
4
(mL.g
-1
DM)
7.728
a
8.845
a
0.434
CO
2
:CH
4
ratio 6.95
a
6.7
a
0.511
ab
Dierent literals in the same row indicate signicant dierences (p<0.05), c=gas
production rate, l=lag phase, b=maximum gas production, CO
2
=carbon dioxide
production, CH
4
=methane production, SEDM=standard error of the dierence
between means.
As can be seen in the table 3, the adaptation phase (parameter ‘l’)
decreased 82 % during the rainy season compared to the dry season
(p<0.05). This decrease in the adaptation time or start of gas production
can be attributed to a higher concentration of non-structural or non-
brous carbohydrates, as shown in the nutritional content in Table 1.
Thus, changes in the lag phase of gas production can be attributed to
microbial activity (Torres et al., 2019); these changes are more consistent
with cell wall thickening. On the other hand, the constant rate of gas
production and maximum gas production were similar between seasons
(p>0.05). This similarity suggests that although the nutritional quality
decreased in the rainy season, the rumen microorganisms carried out an
integral utilization of the consumed diet; the decrease in the nutritional
quality of the pasture is attributed to an atypical water shortage in the
rainy season in the year of analysis. In fact, the data obtained on CH
4
and CO
2
production, as well as the CO
2
:CH
4
ratio, support this theory,
as their values are similar between seasons (p>0.05). On the contrary,
increases in the bre fraction of the diet consumed could have led to an
increase in methane production. However, methane production remained
similar between seasons, as did CO
2
production. In this regard, Carro et
al. (2018) associate CH
4
production and forage quality with digestibility,
so the results shown here are consistent with the latter. Several studies
have shown that forage quality inuences ruminal methane synthesis.
Thus, forages with lower nutritional quality and mature forages increase
the content of structural carbohydrates and reduce the content of more
rapidly fermentable carbohydrates, such as starch. These changes in
the plant cell wall lead to an increase in methane production (Almaraz-
Buendía et al., 2019). However, although there was an increase in bre in
the rainy season, the fraction of CNF remained similar between seasons,
which may have led to no changes in ruminal methane production and
CO
2
consumption for its synthesis.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
García et al. Rev. Fac. Agron. (LUZ). 2025, 42(1): e254203
5-5 |
Conclusions
The results shown indicate that despite an atypical year with
high levels of drought, the nutritional content of the diet consumed
by grazing cattle showed acceptable levels. In addition, the methane
production of the diet consumed between seasons is similar, showing
no changes due to the drought that the pasture was subjected to. This
study proposes a novel way to evaluate methane production from the
diet consumed by grazing cattle.
Literature cited
Almaraz-Buendía, I., García, A. M., Sánchez-Santillán, P., Torres-Salado, N.,
Herrera-Pérez, J., Bottini-Luzardo, M. B., y Rojas-García, A. R. (2019).
Análisis bromatológico y producción de gas in vitro de forrajes utilizados
en el trópico seco mexicano. Archivos de zootecnia, 68(262): 260-266.
https://doi.org/10.21071/az.v68i262.4145
ANKOM. (2023). Daisy II Incubator, Operator´s Manual. https://www.ankom.
com/sites/default/les/document-les/D200_D200I_Manual_0.pdf?srsl
tid=AfmBOorriYFNLhHm4sKPDm_06XJ1KYlMjaZ-xOuKhTn_dloj_
HN-s2lE
AOAC. (2019). Ocial Methods of Analysis. Association of Ocial Analytical
Chemists International. 21th ed. Virginia, USA, 1997: 69-83. https://
www.researchgate.net/publication/292783651_AOAC_2005
Carro Travieso, M. D., Evan, T. D., and González Cano, J. (2018). Emisiones
de metano en los animales rumiantes: inuencia de la dieta. Albéitar,
220: 32-35. https://www.portalveterinaria.com/pdfjs/web/viewer.
php?le=%2Fupload%2Friviste%2FAlbeitar221_MR.pdf
CONAGUA “Comisión Nacional del Agua” (2023). Precipitación (mm) por Entidad
Federativa y Nacional. México 2023: CONAGUA. https://smn.conagua.
gob.mx/tools/DATA/Climatolog%C3%ADa/Pron%C3%B3stico%20
clim%C3%A1tico/Temperatura%20y%20Lluvia/PREC/2023.pdf
Crespo, G., Rodríguez, I. y Lok, S. (2015). Contribución al estudio de la fertilidad
del suelo y su relación con la producción de pastos y forrajes. Revista
Cubana de Ciencia Agrícola 49 (2): 211-219. https://www.redalyc.org/
articulo.oa?id=193039698011
Dong, L. F., Yang, X. Z., Gao, Y. H., Li, B. C., Wang, B., and Diao, Q. Y. (2021).
Eects of dietary NDF: NFC ratio on growth performance, nutritive
digestibility, ruminal fermentation characteristics and methane emissions
of Holstein heifers. Acta Prataculturae Sinica, 30(2), 156.https://doi.
org/10.3390/ani9100725
Elghandour M. M., Salem A. Z. M., Gonzalez-Roquillo M., Bórquez J. L., Gado
H. M., Odongo N. E. and Peñuelas G. G. (2013). Eects of exogenous
enzymes on in vitro gas production kinetics and ruminal fermentation
of four brous feeds. Animal Feed Science and Technology, 179: 46-53.
https://doi.org/10.1016/j.anifeedsci.2012.11.010
Enríquez-Quiroz J. F., Esqueda-Esquivel V. A. y Martínez-Mendez D. (2021).
Rehabilitación de praderas degradadas en el trópico de México.
Revista Mexicana de Ciencias Pecuarias; 12(3): 243-260. https://doi.
org/10.22319/rmcp.v12s3.5876
Espinoza-Velasco B., Ramírez-Mella M. y Sánchez-Villareal A. (2018).
Elucidando la relación entre la microbiota ruminal y la emisión de
gases de efecto invernadero mediante la aplicación de la genómica.
Agroproductividad, 11(2): 3-8. https://revista-agroproductividad.org/
index.php/agroproductividad/article/view/111
France J., Dijkstra J., Dhanoa M. S., López S. and Bannink A. (2000). Estimating
the extent of degradation of ruminant feeds from adescription of their
gas production proles observed in vitro: Derivation of models and other
mathematical considerations. British Journal of Nutrition, 83: 143–50.
https://doi.org/10.1017/S0007114500000180
Galyean M.L. (2010). Laboratory procedures in animal nutrition research.
Department of Animal and Food Sciences. Texas Tech. University,
Lubbock, TX, USA. https://www.depts.ttu.edu/agriculturalsciences/
vetSciences/mgalyean/lab_man.pdf
González-Arreola Adolfo, Murillo-Ortiz Manuel, Pámanes-Carrasco Gerardo A.,
Reveles-Saucedo Fanny y Herrera-Torres Esperanza. (2019). Pricly pear
cladodes. Journal Animal and Plants Science, 40(1):6544-6553. https://
www.m.elewa.org/JAPS
Hackmann, T.J. and Firkins, J.L. (2015). Maximizing eciency of rumen
microbial protein production. Frontiers in Microbiology, 6: 465. https://
doi.org/10.3389/fmicb.2015.00465
Holguín V.A., Cuchillo-Hilario M., Mazabel S. y Mora. Delgado J. (2020). Efecto
de la mezcla ensilada de Pennisetum purpureum y Tithonia diversifolia
sobre la fermentación ruminal in vitro y su emisión de metano en el
sistema RUSITEC. Revista Mexicana de Ciencias Pecuarias, 11(1): 19-
37. https://doi.org/10.22319/rmcp.v11i1.4740
INEGI “Instituto Nacional de Estadística y Geografía”. (2023) Aspectos
geográcos. INEGI. https://www.inegi.org.mx/contenidos/app/
areasgeogracas/resumen/resumen_10.pdf
Murillo, M., Reyes-Jáquez, D., Herrera-Torres, E., and Pámanes-Carrasco, G. A.
(2020). Gas Production Technique as a Powerful Tool for the Evaluation
of the Nutritional Quality of Feedstus in Ruminants’ Production. In O. P.
Jenkins (Ed.), Nova Science Publishers. Advances in Animal Science and
Zoology, 16:1-16. https://www.researchgate.net/publication/354077538_
Gas_Production_Technique_as_a_Powerful_Tool_for_the_Evaluation_
of_the_Nutritional_Quality_of_Feedstus_in_Ruminants’_Production
Nampoothiri, V.M.; Mohini, M.; Malla, B.A.; Mondal, G.; Pandita, S. (2018).
Animal performance, and enteric methane, manure methane and nitrous
oxide emissions from Murrah bualo calves fed diets with dierent
forage-to-concentrate ratios. Animal Production and Science, 60:780.
https://doi.org/10.1016/j.aninu.2018.01.009
NRC “National Research Council”. (2010). Research at the Intersection of the
Physical and Life Sciences. Washington, DC: The National Academies
Press. https://.doi:10.17226/12809
Olivera-Castro Y., Mendez de Acevedo M., Arias-Avilés L. L., Pinheiro-Machado
Filho L. C. y del Pozo-Rodríguez P. P. (2022). Rendimiento y calidad
nutricional del pastizal de la nca Ressacada en Florianópolis-SC,
Brasil. Pastos y Forrajes, 45(3): 1-7. https://www.redalyc.org/articulo.
oa?id=269173684003
Palangi, V. (2019). Eects of Processing Legume Forages with Organic acids
on In vitro gas production, rumen fermantation and ethan Production.
Animal Science; Ataturk University: Yakutiye, Turkey, p. 83. https://doi.
org.10.12681/jhvms.3
Ramos-Juárez, J. A., Martínez-Urbina, E., Izquierdo-Reyes, F., Aranda-Ibañez,
E. M., Vargas-Villamil, L. M., Hernández-Sánchez, D., y Joaquín-Torres,
B. M. (2021). Efecto de Suplementos Fermentados con Pollinaza sobre
el consumo y degradación del pasto Cuba CT-115. Revista Fitotecnia
Mexicana, 44(4-A): 773-773.https://doi.org/10.35196/rfm.2021.4-A.773
Rao, I., Peters, M., Castro, A., Schultze-Kra, R., White, D., Fisher, M., et al., (2015).
Livestock Pluse sustainable intensication of foragebased agricultural
systems to improve livelihoods and ecosystems services in the tropics.
Topical Grasslands, 3(2):59–82. https://hdl.handle.net/10568/68840
Reyes-Estrada O., Murillo-Ortiz M., Herrera Torres E., Gurrola-Reyes N. y
Carrete-Carreón F. O. (2014). Cambios estacionales en consumo,
composición química y degradabilidad ruminal de la dieta seleccionada
por novillos en pastoreo. Revista cubana de Ciencia Agrícola, 46(4): 375-
380. http://www.scielo.org.mx/scielo.php
Rodríguez Tenorio D., Gutiérrez Luna R., Bañuelos Valenzuela C., Rochín Beru-
men F. y Ruiz Fernández E. (2019). Hábitos de comportamiento del ga-
nado bovino pastoreando en un pastizal mediano abierto. Investigación
Cientíca, 12(2): 1-6. https://revistas.uaz.edu.mx/index.php/investiga-
cioncientica/article/view/732
Romero Delgado G., Echeverría Rojas M., Trillo Zárate F., Hidalgo Lozano V.,
Aguirre Terrazas L., Robles Rodríguez R. y Núñez Delgado J. (2020).
Efecto del faique (Acacia macranthak) sobre el valor nutricional del
pasto guinea (Panicum maximun Jaq.) en un sistema silvopastoril.
Revista de Investigación Veterinaria de Perú, 31(1): 1-16. http://dx.doi.
org/10.15381/rivep.v31i1.17562
Sánchez Zubieta A., Savian J.V., de Souza Filho G., Osorio Wallau M., Marín
Gómez A., Bindelle J., Franciscois Bonnet O.J., César de Faccio P.
(2021). Does grazing management provide opportunities to mitigate
methane emissions by ruminants in pastoral ecosystems?. Science
of The Total Environment, 1(754): 142029. https://doi.org/10.1016/j.
scitotenv.2020.142029
Sandoval-Pelcastre, A. A., Ramírez-Mella, M., Rodríguez-Ávila, N. L., and
Candelaria-Martínez, B. (2020). Árboles y arbustos tropicales con
potencial para disminuir la producción de en rumiantes. Tropical and
Subtropical Agroecosystems, 23(33): 1-16.https://www.researchgate.net/
publication/370509194_ARBOLES_Y_ARBUSTOS_TROPICALES_
CON_POTENCIAL_PARA_DISMINUIR_LA_PRODUCCION_DE_
METANO_EN_RUMIANTESetano
SIAP “Servicio de Información Agroalimentaria y Pesquera” (2023). Población
ganadera nacional. SIAP, https://nube.siap.gob.mx/poblacion_ganadera/
SMN “Servició Metereologíaco Nacional”. (2024). Resúmenes mensuales de
temperaturas y lluvia. Servicio Meteorológico Nacional. Comisión
Nacional del Agua. https://smn.conagua.gob.mx/es/climatologia/
temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias
Teodorou M.K, Williams B.A., Dhanoa M.S., McAllan A.B. and France J. (1994).
A simple gas production method a pressure transducer to determine
the fermentation kinetics of ruminant feeds. Animal Feed Science and
Technology, 48:185-197. https://.doi.org/10.1016/0377-8401(94)90171-6
Torres S. N., Sánchez S. P., Rojas G. A. R., Almaraz B. I., Herrera P. J., Reyes V.
I., y Mayren M. F. J. (2019). Producción de gas in vitro y características
fermentativas de consorcios bacterianos celulolíticos ruminales de búfala
de agua (Bubalus bubalis) y vaca suiz-bu. Agrociencia, 53: 145-159.
http://ri.uagro.mx/handle/uagro/1341
Van Soest, P.J., J.B. Robertson, B.A Lewis. (1991). Methods for dietary ber,
neutral detergent ber and non-starch polysaccharides in relation to
animal nutrition: carbohydrate methodology, metabolism and nutritional
implications in dairy cattle. Journal of Dairy Science, 74:35-83.http://.
doi.10.3168/jds.S0022-0302(91)78551-2
Zhang, L., Chung, J., Jiang, Q., Sun, R., Zhang, J., Zhong, Y. and Ren, N.
(2017). Characteristics of rumen microorganisms involved in anaerobic
degradation of cellulose at various pH values. RSC Advances, 7: 40303-
40310. https://doi.org/10.1039/C7RA06588D